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Abstract

: This article presents o network flow analysis to form flexible machine cells with minimum
interceliular part moves and @ neural network model to form part families. The operational
sequences and production quantity of the part, and the number of cells and the cell size ore
taken info considerations for a 0-1 quadrafic programming formulation and a network flow
based solution procedure is developed. After designing the machine cells, o neural network
approach for the integrafion of part fumilies and the automatic assignment of new parts to
the existing cells is proposed. A multi-layer backpropagation network with one hidden layer is
used. Experimental results with varying number of neurons in hidden layer to evaluate the role
of hidden neurons in the network learning performance are alse presenied. The comprehensive

methodology developed in this article is appropriate for solving large-scale industricl
applications without building the knowledge-based expert rule for the celluler manufacturing

1. Introduction

A cellular manufacturing system which implements the
Group Technology (GT) principle is the decomposition of
the manufactuning system into subsystems o minimize
intercellular interactions. This objective is usually
achieved by grouping the machines into cells and the parts
into families on the basis of similar processing require-
menis. In this context, a part family consists of parts

requiring stmilar imachine operations and machines within
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a cell work only on parts belong to the family assigned
te that cell. The concept of GT provides the essential
means for successful development and implementation of
Computer Integrated Manufacturing (CIM) through the
integration of CAD/CAM and the part famity concept.
Moreover, it can be successfully applied in the implemen-
tation of flexible manufacturing systems (FMS). An FMS
is a tolally programmable manufacturing cell dedicated 1o
the production of a part family.

Numerous algorithms in the consiruction of machine
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a1d part groups have been developed on the basis of GT
cassification and coding system [9)[29}, similarity-
coefficient based methods [20](23][24], graph theoretic
a1d network based method [22][28], mathematical pro-
gramming formulations [4)[15)and matrix based heunstic
methods [6)[11]. Kusiak[17] conducted a good review of
each methodology developed over the last two decades.
Most of all methods mentioned above are computationally
inefficient and infeasible in case of large-scale industrial
applications. In addition, those methods utilized the
niachine-part matrix indicating which machines are needed
for processing each part (in this matrix an entry g, = |
il machine f is required to process part i a, = 0,
otherwise) for the production flow analysis [5] as their
input. The machine-part matrix does not consider two
important factors such as the sequence of operations and
production volume of the parts for the more realistic and
accurate design approach.

From the current literature on the machine-part grouping
problem, it can be seen that there are 1wo methods that
are generally followed : identify machine groups and part
families independently and identify machine-part groups
simultaneously, Once one takes into account the operation
sequences of the parts. simultaneous grouping is not
possible. Even when only the machine requirement
(machine-part matrix} is considercd, the machine-part
grouping problem becomes complicated when the number
of machines and the number of parts become large. The
number of parts to be processed in a factory is usually
more than and more likely to vary than the number of
machines. Hence, it would be desirable to form part
families after machine cells are identified.

Once machine celis have been formed, it is necessary
10 develop method to support the on going decision
making concerning new parts assignment to the most
appropriate existing machine cell. Automatic new pari
assignment requires the knowledge of similarity between
processing requirements of a newly introduced part and

-he existing ones. To perform this task, arificial

—— i Iz

intelligence (AD techniques such as knowledge based
expert systems [8][16], the syntactic patiern recognition
approach[27] have been developed. These metheds used
the machine-part matrix as their input for analysis. A
knowledge based expert system depends on a precisely
defined knowledge base with remarkable degree of
accuracy. The problem of Al techniques [25] is that they
are not capable of generalization if new parts do not fall
into the existing domain-specific knowledge base.

A neural network [12] defined as a cognitive informa-
tion processing technique consisting of neuron-like units
(neurons] and the weighted connections between neurons,
however, is able to generalize. Generalization [26] in
neutal networks is defined as the network’s ability to
perform the mapping of similar inputs, not contained in
the training set, to an output. Some neural network models
are adept at pattern classification in the presence of noise
and incomplete data [13][19]. Direct application of neural
networks for machinefpart grouping based on machine-
part matrix [3)[71[18] is possible, however, under consi-
derations of operational sequences with production velume,
direct application of neural networks may not be possible.
Therefore, the machine cell formation comprising all
consideratiens is the first siage to generale a training set
of neural networks for developing the part family
formation and the new part assignment procedure.

This article presents a comprehensive methodology for
the analysis of flexible manufacturing cell systems. A 0-1
quadratic programming is formulated fo obtain machine
cells with the objective of minimizing intercellular part
moves. The optimal cell formation takes into acconat
imponant parameters, such as the operational sequences
of the parts, the production quantity of each part. the
number of desired machine cells and cell size. The
network flow based heuristic is developed to solve this
{-1 quadratic programming formulation. Network flow
models and solution techniques can be of great value i
the design, improvement, and rationalization of complex

large-scale systems. The advantages of using network
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models inclade the accurate representation of real word
systems and the extremely efficient solution procedures
of network algorithms to some large-scale models due to
the exploitation of particular structures in a model. State-
of-the art optimization procedure is used for enhancing
the computational efficiency of the proposed methodology.
The information of cell formation is then used as a
training set (input) of neural network for Jearning process.
The output of the irained neural network is the
identification of part families and the assignment of new
parts to the existing machine cell.

This article is organized as follows, The problem under
consideration 15 formulated in Section 2 and the cor-
responding network flow based solution procedure is
developed aleng with an illustrative example in Section
3. The detailed methodology of neural network approach
for the part family formation i presented in Section 4.
Finally, the conclusions of this article are presented in

Section 5.

2. Problem Formulation

The major issue in GT problem, that of finding the part
family requiring similar machine operations and forming
the associated group of wachines, is actually the cluster
analysis. Due to high combinatorial nature of clustering
problems, grouping machines is better than grouping parts.
As an [lustration, suppose there are 100 parts processed
by some of 20 machine types, then the number of distinct
partitions of 100 parts into 5 part families is approximately
10¢ but that of 20 machines into 5 machine cells is
approximately 10°2. Therefore, machine cells should be
formed prior to the part family formation.

Direct mathematical modeling based on the operation
sequence and production volume of parls may not be
possible. Therefore. a 0-1 quadratic programming is
formulated to minimize intercellular movements on the
basis of the material flow matrix transformed from the

eiven information, le., the operational sequences and

production quantity of the parts, The detailed procedures
of construction of the material flow mairix and the
mathematical programming formulation. alomg with an
illustrative example are described in the remaining portion

of this section.

2.1 Construction of material flow matrix

The objective of this subsection is to describe a
relutionship for computing the material flow between
machines ¢ and f based on the operation sequences and
part volume. The sequence of operations indicates the
order and types of machines needed. The basic concept
used in the computation of material flow follows. We
consider M machines and N parts. Let Y}; be defined as
foliows:

1, if kth part is processed 2t machine j immediate]
r}?f y after machine |
0, otherwise

Additionally. let v, be the production volume of the i*
part. The total material flow for all N parts from machine

{ to machine j can now be computed as indicated below:
- N % . N
fy= Lol 7 L2 M (1)

From the computation of the £, values in terms of Eq.
{1}, an MxM material flow matrix F can be obtained. To
iliustrate the procedure for calculating material flows, five
parts (Pl, P2, ... P5) with the following operational
sequences on five machines (1.2,..5) and the given

production volumes will be considered:

Pl: 2-3-1-4-5 vi=2
P2: 2.5-1-4 vi=3
P3: 1-4-3-5-2 vi=1
P4; 5342 vi=3
Ps5: 4.1.5:3 vSe1
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The material flow matrix F can be computed using Eq.

(1) by counting the movements of all parts between
machine / and machine j. For example. the number of

material moves between machine | and machine 4 1is

4

. 3 1
fj- = ¥ 'l'k( i ??;1)

I=1

=L+ 0+ 3+ O+ 10«0+ 300+ 10+ 1)
=7

All other f's are computed 0 determine the following

material flow matrix F.
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As indicated earlier, this matrix represents the number
of part moves from one machine to another. The objective
of cell formaticn is to minimize the intercellular
movement of material so as to reduce the set up times
and material handling costs, In order 0 meet this
objective, machines having high number of part moves
should be grouped together and machines having low
number of part moves should be separated. Based on
matrix F, the Intermachine Material Flow (IMF) nerwork
with nodes and arc weights representing, respectively, the
machines and the number of part moves between machines

can be obtained.

2.2 Problem Formulation

The problem of machine cell formation is formulated
as a 0-1 guadratic programming formulation originally
developed by Kumar et al. [14] for the network
decomposition preblem. Let F be a M x M marrix where
M is the number of machines and an element of F, f,

denotes the number of part moves between machine { and

llitz o= L

machine j. Let p be the gumber of desired cells and #
and ! be the upper bound and the lower bound on the
total number of machines in each cell. With this notation,
a 0-1 guadratic programming formulation for the problem
under consideration 1s shown below:

S @
Hmize E| j=;z'+'. E| f“'llx Uxﬂ
subject 1o
P
Ixg=1, i=1..M (3)
BTy
P< Ty < f=1.p 4)
=t
IU' S {Ovi}s V [,JI' (5)

where

1, if machine { is in cell j
i T [O, otherwise

This formulation maximizes the sum of all number of
part moves that belong to the p cells. Since machine :
and machine j in a cell are represented by the node
product x.x, , machines { and j are included in a cell if
and only if v, = x, = L. Constraint set {3) ensures that
each machine / is in exactly one cell and constraint set
(4) restricts the number of machimes in each cell
Constraint (5) imposes integrality.

It is unlikely that an efficient exact algorithm will ever
be found because this model is NP-Complete. A practical
solution 1o the problems can be obtained by the netwark
flow based heuristic. In the next scction an efficient

solution procedure is presented.

3. Network Flow Based Solution Pro-
cedure

The basic network flow concept to soive the mathemat-
ical formulations is as follows. A network G = (¥, Ai

is said to be bipartite if node set N can be partitioned



M

into disjoint subsets &, and N, such that each of its arcs
has one endpoint in N, and the other in N, Node { in
the original network is split into two nodes 7, and j, to
transtorm the original network into the bipartite network
having 2M nodes (N={i} and N={i}) and directed
branches {i, j). i, j =1,2.--- M. The solution procedure
will be developed after representation of the bipariire
network as a capacitated circulation network. In order to
solve the cell formation problems wsing a network flow
approach, the following a capacitated circulation network

construction procedure can be conducted:

3.1 Network Transformation Procedure

I} Create 2M nodes represented by #,, f,, j= 1,2, .M,
and a super source node S and a super sink node
T.

2} Structwre the rtest of the network according to the
following rules. Each arc is assigned three values
ff, L, C to indicate an upper bound on its flow, a
lower bound on its flow and the per-unit cost of

Now, respectively,
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= il sl

{1 For each node i, create an arc directed from i, to
J» with capacity-cost triplet defined by [U, L, (] =
fl. 0.¢c. i=j and [U, L, Cl=[1, 0. 0] for /=],

(% For each node i, create an arc directed from 5 1o
i, with capacity-cost triplet defined by [U, L. ()=
n, 1, oL

(@ For each node j,, create an arc directed from /. to
T with capacity-cost triplet defined by [I/, L. ()=
[eo, 0, 01

3} Create a return arc (5, T) with capacity-cost triplet
[0, L, CI-[M. M, 0] to transform the network G=

N, A} into a circulation network.

A circulation network representation for the cell
formation problem is shown in Figure 1. As can be seen
in the figure, the network configuration is the capacitated
circulation network which can be solved by the minimum
cost flow algorithm. In this network model, the flow along
arc (S, ) is always one such that each source nodc i
can supply one unit of flow to one destination node j,

by the flow conservation condition. The cost of shipping

Figure 1. Initia] Capacitated Circulation Network for Machine Cell Formation
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onz unit of flow from each node /i, to the node j, is
known as the weight of the arcs (number of part moves)
in the eriginal IMF network. Having properly represented
the problem as a capacitaied circulation network, the
relaxation algorithm developed by Bertsekas and Tseng
[1" can be used to solve the corresponding minimum-cost
problem, This relaxation methed is a dual ascem
procedure; it works on the dual formulatien trying to
improve the value of the dual solution at every iteration
for the minimal cosi network flow problems, The
computerized version of this procedure is known as
RELAXT-III [2]. After transforming the IMF network to
the: capacitated circulation network, the proposed nerwork
flew based heuristic consisting of the following five steps
caa be applied.

3.2 Algorithm Steps

Step 1: Identification of minimat cost arc flows: Solve
the transformed network using the relaxation algorithm
and identify the demand node set {f,}={jif (LJjJ=1}

Step 2: Computing the total cost on each demand node:
If f Ui, j/)=11or all arcs (i,j,)€A", compute the sum of

costs on each demand node:
SGy) = TR el el ¥ RBE,)
‘.‘J

Step 3: Selection of the p demand nodes having the p
smallest sums of costs: For given p, order S(7.)'s as S,
<§,=--<§, and find demand node set

G = 115G, €18, 8. S0

7
Step 4: Parameter change procedure: Remove all arcs
{f\. T with ) € U:)l by setting their upper bound equal
to zero and reset [, 0, 0] to [1 ./, 0] for all arcs (j;,
7", Tn addition, set lower bound equal to one on arcsi,
iy for i=j.
Step 5: Identification of cells: Solve again minimal cost

pioblem and identify cells by tracing positive flows from

i

the source to the demand nodes.

The main idea of above solution procedure is 1o devise
an assignment network to assign machines to other
machines. The arcs for this network (a bipartite network)
are determined by whether or not two given machines
are connected in the IMF network. After transforming the
hiportite network into a capacitated circulation network
1o choose p subsets representing p cells, the machines are
allocated to cells subject to a constraint on cell size. Cells

correspond to loops having positive flows.

3.3 An illustrative example

As an illustrative example, 16 parts with operational
sequences on 12 machines and production velumes as
given in Table 1 will be considered. The intermachine
material flow (IMF) network based on Eq. {17 15 shown
in Figure 2. The number assigned to the arcs represents
the arc weight (number of part moves) between two nodes

Toble 1. The Operotional Sequences of the Parts

Part i Operational Sequence |Production Volume
1 1489 2 '.
2 1-2-6-4-87 ' 3 7
3 1-247-89 1
4 1-4-7-9 3
5 1-6-10-7-9 2
6 £10-7-8-9- 1
7 6-4-89 2 N
g 3-5-2-6-4-B9 1
g 3.5-6-4-8-9 1
10 36-4-8 2
1 11-7-12-11 1 :
12 1171012 '
13 11.7-10 3
14 11410 1
15 11712 1
16 8710 3




Figure 2. An lllustrative IMF Network

{machines). It is desired 1o find three cells with the size
restriction =2 and u=4.

The original network is transformed into the capacitaied
circulation network. After applying the network algorithm,
seven demand nodes have positive flows. Three demand
nodes (4,7, and 8) are selected after computing the
associated cost. Four demand nodes are eliminated by
setting the upper bound o equal to zero on arcs (7, T).
Also, the lower bound on. arcs {i,, j;) is set 10 one. Then,
the flows are rerouted to obtain the required solution by
applying the network flow algorithm, Three machine cells
{MCs} can be obtained:

1) MC 1 consists of machine 14,68
(2) MC 2 consists of machine 7.9,10,i1
(3) MC 3 consists of machine 2,3,5,12

This cell information can be used as the training set
of neural network’s learning process for the identification
of part families and the automatic assignment of new
incoming parts. Detailed description of neural networks

and its theoretical foundations are described in the

follewing section, along with the example considered here.

4. Neural Networks for part family forma-
tion and new part assignment

The role of the newal networks is the assignment of
parts to machine cells based on the leaming process. It
takes an input numeric pattern (input vector) and outputs
an numeric pattern (output vector). In the context of GT
problem, machine requirement of each part is the input
and assignment of a suitable machine cell is the output
of neural networks. The properties of neural networks and

methadology are given following two subsections.

4.1 Property of neural networks

A neural network can be thought of as a mapping
procedure, an M-dimensional input space are transformed
into corresponding an p-dimensional output space. It
requires a training set Q:0={(x,0), - (x,0,)}, where 0=
#(x) and #( - } is the mapping function ¢: Rr—Re. The
x, are called input vectors and the o, are called target

vectors or desired outputs.
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A newral network implements mapping by many
processing elements {neurons} organized into layers and
weighted connections {weights) between layers. A typical
neural network consists of a sequence of layers with full
or partial connections between consecutive layers. The
input layer receives the input vector and the owtput layer
forms the numeric output of the network to @ given input.
Layers between input layer and output layer are called
hidden layers. Inputs (x,) are supplied to the input newrons,
then each input is muliplied by a corresponding weight
{w,}, and all of the weighted inputs are summed to process
the activation function f{ ' ).The output value of the
activation function (y) is the input of consecutive layer
and proceeds as before to the output layer.

Learning is the most important property of neural
networks. Learning is the process of adapting or
modifying the connection weights 10 map a set of input
vectlors onto a corresponding set of output vector by
means of the gradient descent algorithm [21]. This
algerithm gradually adapis the connection weights in order
to reduce difference between the actual network output
and the desired output. This kind of leamning based on
input and desired output is referred to as the supervised
learning. If no desired output is shown in the learning
process, then it is called the unsupervised learning. As
far as it concems the GT problem, supervised learning
can be considered since information concerning correct
machine cell by means of the network analysis are
available. Based on this requirement, the multi-layer
neural network with one hidden layer along with the
backpropagation learning algorithm was chosen.

4.2 Methodology of backpropagation neural netwaork
The typical backpropagation (BP) network always has
an input layer, an cutput layer and at least one hidden
layer. The objective of the learning process is to minimize
the squared error E given in Eq. (6) by making connection
weight adjustment according to the ermor between the

actual owtput value and the desired outpui value,

Tras

lo, - 6,F (6

Where o, 15 the desired output value, 4, is the actual
output value of network and p is the number of output
neurons. The error is determined by performing the
forward computations and this emor is propagated
backward through the network by means of the gradient
descent algorithm called the generalized delia tule. The
detailed algorithm of BP network for implementation can
be founded in Haykin [10].

In the learning process the weights starting off with
random values are changed using the generalized delia
rule which accounts for error between the actual and
desired output valve. This error is decreased gradually as
the number of irerations is increased. After several
complete presentation of all vectors in the training ser.
the network converges to a stcady set of weights. which
have only small system error in value. The sysiem emor

can be defined as mean squared error (MSE):

12 _ )
MSE = ~ T (g;- ¢ (7
P =
where
- 12 de _
¢ = 5 !_:"3:' and €; = 0;-

The track of system error (MSE) versus the number of
iterations is defimed as a learning curve which represents
the leamning performance of network, The network
convergence is determined by a learming tolerance of 0.01.
e, if MSE is less than (.01, then network was trained.

A BP network architecture for the part family formation
is shown Figure 3. The number of neurons in the nput
layer is the total number of machine types (M). The input
vectors to this network are M-dimensional binary vectors
where an element of m =1 indicates machine cell 7 has
machine j and m=0 indicates machine cefl i does not.
j=1,+ M. The number of neurons in the output layer s
the number of machine cells (p). The target vectors

{desired output) correspond 1o input vectors are the p-



Network Analysis and Neural Network Approach for the Cellular Manufacturing System Design 31

e

dimensional binary vectors where an element of o=1
indicates the machine cell i and 0,=0 does net, j=4,---p.
As an illustration, consider 3 machine cells from the
previous example. Machine cell 1 consists of machine
{1.4,6,8). The input vector for this cell s (100 1 0 |
010000 and the desired output vector is (1 0 0.
Stmilarly, the remaining machine cells are transformed
into the following binary vectors {training set) presented
in Table 2.

The number of neurons in hidden layer is the important

problem in the design of BP network[21] . Smaller
number of neurons in hidden layer does not make network
converge and larger number of neurons is useful for
enhancing mapping accuracy, but increases the learning
iterations impractically, which means it takes tong time
to converge, or the network cannot be trained at all. Based
on these guideline, simulation study was conducted to

train networks with varying number of hidden layer to

Table 2. The List of Input and Target Vectors {Fraining Set)

Cell Machines in Cell Input Vector Target Vector
1 (1,4,6.8) (100101010000 (100 ;
(7.9.10.11) Go0000101110 (010 _j
(2,3,5,12) {0t1010000001) 001) |
Machine Cell

Machine Requirement

Output Layer
(3 neurons)

Hidden Layer
(15 neurons)

Input Layer
{12 neurons)

Figure 3. A Three-Layer Backpropagation Network fer Part Family Formation
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evaluate learning performance of each network. Networks
with 3,6,10,15 and 20 hidden newrons were trained using
the same training set and their learning performances are

presented in Figure 4.

6 System Errors (MSE)

the set of parts assigned to the same cell. The testing set
of 16 binary wvectors were submitted 1o the Irained
network. The outpmt of network, the assignment of

machine cell for each part, can be produced by the

05}
- n=
"'.
04+ Ly
1
| n=6
1
03l
]
\ n=12
02 :
0.1 =78 .
n=20 _, —~
0ll{}flI:III:III{IJL;_I]I:III:III{IIIII:I{II{
0 80

160 240 320 400 480 560 640 <VY20 800 880 960

Learning Iterations (t)

Figure 4. Leaming Performance as a Function of Number of Neurons in Hidden Layer

The learning performance improved with the number
of neurons in hidden layer up to 15 hidden neurons. No
firther improvement was achieved more than 15 hidden
neurons. After training the network with 15 hidden
neurons, the part family formation and the new part
assignment can be done on the basis of the generalization
ability of neural networks. As previously mentioned,
mapping networks can produce reasonable output for input
vectors, not contained in the Iraining set.

Once machine cells are formed, a part should be
assigned 1o the machine cell by the machine requirement
of part so that this part can be fully processed in the

assigned machine cell. In this context, a part family is

forward computation. If new parts are introduced, the
same procedure can be applied to assign these parts to
the most appropriate machine cell without repeating the
entire computational process.

This methodology was written and complied the C-
language using an IBM/PC computer. Table 3 shows the
whole testing set, new parts and output vectors of the
trained network. As can be seen, three part families can
be identified and new parts are assigned automarically to
the one of the machine cells, to which these parts should

belong.
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Table 3. The List of Test Vector and Output of Neural Network

Part ! Test Vector Output . Coll Assignment |
1 (100100011000 ©10 2

2 (110101110000 100 1

3 110100111000 {100} 1

4 {too100101000) {100 1

5 (100001101100 (100 1

6 bcoogt111100 010 2

7 000101011000 010 2

8 111110611000 {100} 1 !
9 001111011000 (100 1 :
10 (00110101000 0) 100 1

11 (boooc010001 1) f0o1) 3

12 {to0000100111) 0 01) 3

13 (160000100110} 001} 3

14 (100000000110} 001 3

15 {0oo00010001 1) foo1) 3

18 {fboooot100100) {100 1

new {1o1100011100) : (100 1

new2 000100110011 4 (001} 3

5. Conclusions

A new approach for the design of manufacturing cells
employing a neural network combined with the network
analysis has been presented. A network flow based
solution procedure was developed o form machine cells
on the basis of the material flow matrix. This matrix is
obtained from given set of pars having the generic
operational sequences and production volume. The ebjec-
tive of machine cell formation is to minimize intercellular
movements of parts subject lo the restrictions on the
limited number of machine cells and cell sizes. The cell
information was then used as a taining set of neural

networks for the part family formation 4nd new part

assignment. Simulation study for selecting the best internal
representation (hidden neuwrons) was also conducted. The
neural networks successively mmplemented in this aricle
can be generally applied to the cell assignment of newly
imroduced part without building the previous coded
knowledge or expert rule and repeating the entire
computational process.

The methodology developed in this article was applied
to an industrial company. The production facilities
included approximately 150 machines to manufacture
hydraulic cylinders and pistons, power transmission gears,
links, and other mechanical parts. About 40,000 parts are
in process and 5,500 unique operation routings of parts

are used for the produciion of a lift and hoist. The
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computer running time of about 30 seconds for the cell
formation in the industrizl problem considering 150
machines and 5.500 operational sequences seems to be
attractive. Compuational results indicate that the proposed
appreach is appropriate for solving large-scale industrial
problems incloding up to several hundreds machines and
several thousands of parts in a microcomputer environ-
ment. Finally, the major contributions of proposed method
are efficient compwational performance by employing the
network flow algorithm for machine cell formation and
effective in solving large-scale part family formation by
exploiting the parallel architecture of neural networks.
Therefore, this methodology is not significantly influenced
by the size of problems. In addition, this methodology
has potential applications in other areas such as the
Computer Aided Process Planning System to refrieve the
process plan of new part, scheduling of job dispatching
rules to minimize the number of tool switchings in the
FMS environment. and plarning the PCB (Printed Circuit

Board} assembly operations.

References

[1] Bersekas, I, and Tseng, P., “Relaxation methods for
minimum cost ordinary and generalized network flow
problems”, Operations Research, 36, 1988, pp.93-114.

(2] Bertsckas, D., and Tseng, P., *RELAXT-III: A new
and improved version of the RELAXT code”,
Laboratory for Information and Decision System
Repore LIDS-P-1990, MIT, Cambridge, MA. 1990.

[3] Burke, L, and Kamal, ., “Neural networks and Part
Family/Machine Group Formation Problem in Cellular
Manufacturing: A Framework using Fussy ART".
Journal of Manufacturing Systems, 14, 1995, pp.
148-159,

f4] Boctor, F. F., “A lnear formulation of the machine-
part cell formation problem, {nternational Journal of
Production Research”, 29, 1991, pp. 343-356.

[5] Burbidge, 1. L., The Introduction of Group Technol-

0 e L ==

agv. New York: John Wiley & Sons. 1975,

|6] Chan. H M., and Milrer. D. A., "Direct clustering
algorithm for group formation in cellular manufactur-
ng”, Journal of Manufacruring Systems. |, 1982, pp.
65-75.

[71 Chu, C.. "Manufacturing Cell Formation by Compet-
tive Leaming', International Journal of Produciion
Research, 31, 1993, pp. 829-843.

{8] ElMaraghy, H. A.. and Gu, P, “Feature based expert
parts assignment in cellular manufacturing”, Journal
of Manufaciuring Systems, 8, 1989, pp.139-152.

[9] Han, C., and Ham, 1, “Multiobjective cluster analysis
for part family formation™, fowrnal of Manufacnning
Systems, 5, 1986, pp. 223-230.

[10] Haykin, S.. Newral Nerworks: A Comprehensive

Foundation. McMillan, 1994,

[} King, J.R., and Nakomchai, V., “Machme-component
group formation in group technology: Review and
extension”, International Journal of Production
Research, 20, 1982, pp. 117-133.

[12] Kohonen, T., “An introduction to neural compuiing”,
Neural Nerworks, 1, 1988, pp. 1-16.

[13] Kosko, B., “Unsupervised learning in noise”, f/EEE
Transactions on Newral Networks, 1, 1990, 44-57.

{14] Kumar, K. R., Kustak, A.. and Vannelli, A.
“Grouping of parts and components in flexible
manufacturing systems”, Ewropeun Journal of Opera-
tional Research, 24, 1986, pp. 387-397.

f15] Kusiak, A., “The generalized group technology
concept”, [aternational  Jouwrnal of Production
Research, 25, 1987, pp. 561-569.

f16) Kusiak, A., “Artificial inelligence and operation
research in flexible manufacturing system”, Informa-
tion Systems and Operations Research, 25, 1987, pp.

2-12.

(17} Kusiak, A, {melligens Manufacturing Systems. New
Jersey: Prentice-Hall, Inc. 1990,

[18] Liao, T., and Chen. L., “An Evaluation of ART!
neural models for GT part family and Machine Cel!



Network Analysis and Neural Network Approach for the Cellular Manufacturing Systern Design 35

Formation”, Journal of Manufacturing Systems, 12,
1993, pp. 282-290.
{19] Lippman.R.P.. “An introduction to computing with
neural nets”, JEEE ASSP Magazine, 1987, pp. 4-22.
(20] Luong, L., “A Cellular Similarity Coefficient
Algorithm for the Design of Manufacturing Cells”,

International Journal of Production Research, 31,
1993, 1757-1766.

[21]Pao, Y., Adaptive Pattern Recognition and Neural
Networks. Addison-Wesley, MA. 1985.

[22] Rajagopalan, R.. and Barta, J. L., “Design of Cellular
Production System: A Graph Theoretic Approach”™,
International Journal of Production Research, 13,
1982, pp. 567-379.

[23] Seifoddni, H..and Wolfe, P, M., “Application of the
similarity coefficient method i group technology”,
IEEE transactions, 18, 1986, pp. 271-277.

[24] Seifoddini, H., and Hsu, C., “Comparative Stady of
Similarity Coefficients and Clustering Algorithms in
Cellular Manufacturing™, Journal of Manufacturing
Systems, 13, 1994, pp. 119-127.

[25] Sherald, M., Neural nets versus expert system, PC

BT

Al Magazine, 3, 10-13. 1989,

[26] Wann, M., Hediger, T.,and Greenbaun, N. N., “The
mfluence of training sets on peneralization in feed-
forward neural neiworks”, Proceedings of [LEE
International Conference on Neuwral Networks, 3,
1990, pp. 137-142.

(27] Wu, H. L., VenugopalR. and Barash. M. M.
“Design of a cellular Manufacturing System: A
syntactic paltern recognition approach™, Journal of
Manufacturing Systems, 5, 1986, pp. 81-87.

{28] Wu, N, and Salvendy, G., “A Modified Network
Approach for the Design of Cellular Manufacturing
Systems”, International Jouwrnal of Production
Research, 31, 1993, pp. 1409-1421.

{29] Xu, H., and Wang, H., “Part family formation for
GT application based on fuzzy mathematics”, [nrer-
national Jowrnal of Production Research, 27, 1989,
pp. 1637-1631.

97.d 3% Az M4 97d 1Y HE PH



