• Title/Summary/Keyword: multi-cameras

Search Result 256, Processing Time 0.025 seconds

MPEG-DASH based 3D Point Cloud Content Configuration Method (MPEG-DASH 기반 3차원 포인트 클라우드 콘텐츠 구성 방안)

  • Kim, Doohwan;Im, Jiheon;Kim, Kyuheon
    • Journal of Broadcast Engineering
    • /
    • v.24 no.4
    • /
    • pp.660-669
    • /
    • 2019
  • Recently, with the development of three-dimensional scanning devices and multi-dimensional array cameras, research is continuously conducted on techniques for handling three-dimensional data in application fields such as AR (Augmented Reality) / VR (Virtual Reality) and autonomous traveling. In particular, in the AR / VR field, content that expresses 3D video as point data has appeared, but this requires a larger amount of data than conventional 2D images. Therefore, in order to serve 3D point cloud content to users, various technological developments such as highly efficient encoding / decoding and storage, transfer, etc. are required. In this paper, V-PCC bit stream created using V-PCC encoder proposed in MPEG-I (MPEG-Immersive) V-PCC (Video based Point Cloud Compression) group, It is defined by the MPEG-DASH (Dynamic Adaptive Streaming over HTTP) standard, and provides to be composed of segments. Also, in order to provide the user with the information of the 3D coordinate system, the depth information parameter of the signaling message is additionally defined. Then, we design a verification platform to verify the technology proposed in this paper, and confirm it in terms of the algorithm of the proposed technology.

A CPU-GPU Hybrid System of Environment Perception and 3D Terrain Reconstruction for Unmanned Ground Vehicle

  • Song, Wei;Zou, Shuanghui;Tian, Yifei;Sun, Su;Fong, Simon;Cho, Kyungeun;Qiu, Lvyang
    • Journal of Information Processing Systems
    • /
    • v.14 no.6
    • /
    • pp.1445-1456
    • /
    • 2018
  • Environment perception and three-dimensional (3D) reconstruction tasks are used to provide unmanned ground vehicle (UGV) with driving awareness interfaces. The speed of obstacle segmentation and surrounding terrain reconstruction crucially influences decision making in UGVs. To increase the processing speed of environment information analysis, we develop a CPU-GPU hybrid system of automatic environment perception and 3D terrain reconstruction based on the integration of multiple sensors. The system consists of three functional modules, namely, multi-sensor data collection and pre-processing, environment perception, and 3D reconstruction. To integrate individual datasets collected from different sensors, the pre-processing function registers the sensed LiDAR (light detection and ranging) point clouds, video sequences, and motion information into a global terrain model after filtering redundant and noise data according to the redundancy removal principle. In the environment perception module, the registered discrete points are clustered into ground surface and individual objects by using a ground segmentation method and a connected component labeling algorithm. The estimated ground surface and non-ground objects indicate the terrain to be traversed and obstacles in the environment, thus creating driving awareness. The 3D reconstruction module calibrates the projection matrix between the mounted LiDAR and cameras to map the local point clouds onto the captured video images. Texture meshes and color particle models are used to reconstruct the ground surface and objects of the 3D terrain model, respectively. To accelerate the proposed system, we apply the GPU parallel computation method to implement the applied computer graphics and image processing algorithms in parallel.

Improvement of the Accuracy of Fringe Pattern Profilometry 3D Measurements through Phase Correction (위상 보정을 통한 Fringe Pattern Profilometry 3D 측정의 정확성 개선)

  • Kim, Ho-Joong;Cho, Tai-Hoon
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2016.10a
    • /
    • pp.389-392
    • /
    • 2016
  • As technologies evolve, 3D measurement techniques using cameras have been developed continuously. In 3D measurement, high accuracy, fast speed, and easy implementation are very important factors. Recently, 3D measurement using multi-frequency fringes has been widely used. This method is generally a method of measuring the height of a image obtained by projecting a sine wave through the projector. The sine wave is produced by software. However, this sine wave is not a perfect sine wave by gamma of projector. This is given a bad influence on the height measurement, and can not measure the correct height. In this paper, we propose a method for correcting the phase of the sine wave to avoid being affected gamma. Through this method it will be able to make more accurate height measurement.

  • PDF

Study on Identification Procedure for Unidentified Underwater Targets Using Small ROV Based on IDEF Method (소형 ROV를 이용한 IDEF0 기반의 수중 미확인 물체 식별절차에 관한 연구)

  • Baek, Hyuk;Jun, Bong-Huan;Yoon, Suk-Min;Noh, Myounggyu
    • Journal of Ocean Engineering and Technology
    • /
    • v.33 no.3
    • /
    • pp.289-299
    • /
    • 2019
  • Various sizes of ROVs are being utilized in offshore industrial, scientific, and military applications all around the world. Because of innovative developments in science and technology, image acquisition devices such as sonar devices and cameras have been reduced in size and their performance has been improved. Thus, we can expect better accuracy and higher resolution even in the case of exploration using a small ROV. The purpose of this paper is to prepare a standard procedure for the identification of unidentified hazardous materials found during the National Oceanographic Survey. In this paper, we propose an IDEF (Integrated DEFinition) method modeling technique to identify unidentified targets using a small ROV. In accordance with the proposed procedure, an ROV survey was carried out on target No.16 with a four-ton-class fishing boat as a support vessel on September 18th of 2018 in the sea near Daebu Island. Unidentified targets, which were not known by the multi-beam data obtained from the ship, could be identified as concrete pipes by analyzing the HD camera and high-resolution sonar images acquired by the ROV. The whole proposed procedure could be verified, and the survey with the small ROV required about 10 days to identify the target in one place.

EPAR V2.0: AUTOMATED MONITORING AND VISUALIZATION OF POTENTIAL AREAS FOR BUILDING RETROFIT USING THERMAL CAMERAS AND COMPUTATIONAL FLUID DYNAMICS (CFD) MODELS

  • Youngjib Ham;Mani Golparvar-Fard
    • International conference on construction engineering and project management
    • /
    • 2013.01a
    • /
    • pp.279-286
    • /
    • 2013
  • This paper introduces a new method for identification of building energy performance problems. The presented method is based on automated analysis and visualization of deviations between actual and expected energy performance of the building using EPAR (Energy Performance Augmented Reality) models. For generating EPAR models, during building inspections, energy auditors collect a large number of digital and thermal imagery using a consumer-level single thermal camera that has a built-in digital lens. Based on a pipeline of image-based 3D reconstruction algorithms built on GPU and multi-core CPU architecture, 3D geometrical and thermal point cloud models of the building under inspection are automatically generated and integrated. Then, the resulting actual 3D spatio-thermal model and the expected energy performance model simulated using computational fluid dynamics (CFD) analysis are superimposed within an augmented reality environment. Based on the resulting EPAR models which jointly visualize the actual and expected energy performance of the building under inspection, two new algorithms are introduced for quick and reliable identification of potential performance problems: 1) 3D thermal mesh modeling using k-d trees and nearest neighbor searching to automate calculation of temperature deviations; and 2) automated visualization of performance deviations using a metaphor based on traffic light colors. The proposed EPAR v2.0 modeling method is validated on several interior locations of a residential building and an instructional facility. Our empirical observations show that the automated energy performance analysis using EPAR models enables performance deviations to be rapidly and accurately identified. The visualization of performance deviations in 3D enables auditors to easily identify potential building performance problems. Rather than manually analyzing thermal imagery, auditors can focus on other important tasks such as evaluating possible remedial alternatives.

  • PDF

LH-FAS v2: Head Pose Estimation-Based Lightweight Face Anti-Spoofing (LH-FAS v2: 머리 자세 추정 기반 경량 얼굴 위조 방지 기술)

  • Hyeon-Beom Heo;Hye-Ri Yang;Sung-Uk Jung;Kyung-Jae Lee
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.19 no.1
    • /
    • pp.309-316
    • /
    • 2024
  • Facial recognition technology is widely used in various fields but faces challenges due to its vulnerability to fraudulent activities such as photo spoofing. Extensive research has been conducted to overcome this challenge. Most of them, however, require the use of specialized equipment like multi-modal cameras or operation in high-performance environments. In this paper, we introduce LH-FAS v2 (: Lightweight Head-pose-based Face Anti-Spoofing v2), a system designed to operate on a commercial webcam without any specialized equipment, to address the issue of facial recognition spoofing. LH-FAS v2 utilizes FSA-Net for head pose estimation and ArcFace for facial recognition, effectively assessing changes in head pose and verifying facial identity. We developed the VD4PS dataset, incorporating photo spoofing scenarios to evaluate the model's performance. The experimental results show the model's balanced accuracy and speed, indicating that head pose estimation-based facial anti-spoofing technology can be effectively used to counteract photo spoofing.

Research on Object Detection Library Utilizing Spatial Mapping Function Between Stream Data In 3D Data-Based Area (3D 데이터 기반 영역의 stream data간 공간 mapping 기능 활용 객체 검출 라이브러리에 대한 연구)

  • Gyeong-Hyu Seok;So-Haeng Lee
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.19 no.3
    • /
    • pp.551-562
    • /
    • 2024
  • This study relates to a method and device for extracting and tracking moving objects. In particular, objects are extracted using different images between adjacent images, and the location information of the extracted object is continuously transmitted to provide accurate location information of at least one moving object. It relates to a method and device for extracting and tracking moving objects based on tracking moving objects. People tracking, which started as an expression of the interaction between people and computers, is used in many application fields such as robot learning, object counting, and surveillance systems. In particular, in the field of security systems, cameras are used to recognize and track people to automatically detect illegal activities. The importance of developing a surveillance system, that can detect, is increasing day by day.

Experimental Analysis of Physical Signal Jamming Attacks on Automotive LiDAR Sensors and Proposal of Countermeasures (차량용 LiDAR 센서 물리적 신호교란 공격 중심의 실험적 분석과 대응방안 제안)

  • Ji-ung Hwang;Yo-seob Yoon;In-su Oh;Kang-bin Yim
    • Journal of the Korea Institute of Information Security & Cryptology
    • /
    • v.34 no.2
    • /
    • pp.217-228
    • /
    • 2024
  • LiDAR(Light Detection And Ranging) sensors, which play a pivotal role among cameras, RADAR(RAdio Detection And Ranging), and ultrasonic sensors for the safe operation of autonomous vehicles, can recognize and detect objects in 360 degrees. However, since LiDAR sensors use lasers to measure distance, they are vulnerable to attackers and face various security threats. In this paper, we examine several security threats against LiDAR sensors: relay, spoofing, and replay attacks, analyze the possibility and impact of physical jamming attacks, and analyze the risk these attacks pose to the reliability of autonomous driving systems. Through experiments, we show that jamming attacks can cause errors in the ranging ability of LiDAR sensors. With vehicle-to-vehicle (V2V) communication, multi-sensor fusion under development and LiDAR anomaly data detection, this work aims to provide a basic direction for countermeasures against these threats enhancing the security of autonomous vehicles, and verify the practical applicability and effectiveness of the proposed countermeasures in future research.

Development of a Close-range Real-time Aerial Monitoring System based on a Low Altitude Unmanned Air Vehicle (저고도 무인 항공기 기반의 근접 실시간 공중 모니터링 시스템 구축)

  • Choi, Kyoung-Ah;Lee, Ji-Hun;Lee, Im-Pyeong
    • Spatial Information Research
    • /
    • v.19 no.4
    • /
    • pp.21-31
    • /
    • 2011
  • As large scaled natural or man-made disasters being increased, the demand for rapid responses for such emergent situations also has been ever-increasing. These responses need to acquire spatial information of each individual site rapidly for more effective management of the situations. Therefore, we are developing a close-range real-time aerial monitoring system based on a low altitude unmanned helicopter. This system can acquire airborne sensory data in real-time and generate rapidly geospatial information. The system consists of two main parts: aerial and ground parts. The aerial part includes an aerial platform equipped with multi-sensor(cameras, a laser scanner, a GPS receiver, an IMU) and sensor supporting modules. The ground part includes a ground vehicle, a receiving system to receive sensory data in real-time and a processing system to generate the geospatial information rapidly. Development and testing of the individual modules and subsystems have been almost completed. Integration of the modules and subsystems is now in progress. In this paper, we w ill introduce our system, explain intermediate results, and discuss expected outcome.

S-FDS : a Smart Fire Detection System based on the Integration of Fuzzy Logic and Deep Learning (S-FDS : 퍼지로직과 딥러닝 통합 기반의 스마트 화재감지 시스템)

  • Jang, Jun-Yeong;Lee, Kang-Woon;Kim, Young-Jin;Kim, Won-Tae
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.54 no.4
    • /
    • pp.50-58
    • /
    • 2017
  • Recently, some methods of converging heterogeneous fire sensor data have been proposed for effective fire detection, but the rule-based methods have low adaptability and accuracy, and the fuzzy inference methods suffer from detection speed and accuracy by lack of consideration for images. In addition, a few image-based deep learning methods were researched, but it was too difficult to rapidly recognize the fire event in absence of cameras or out of scope of a camera in practical situations. In this paper, we propose a novel fire detection system combining a deep learning algorithm based on CNN and fuzzy inference engine based on heterogeneous fire sensor data including temperature, humidity, gas, and smoke density. we show it is possible for the proposed system to rapidly detect fire by utilizing images and to decide fire in a reliable way by utilizing multi-sensor data. Also, we apply distributed computing architecture to fire detection algorithm in order to avoid concentration of computing power on a server and to enhance scalability as a result. Finally, we prove the performance of the system through two experiments by means of NIST's fire dynamics simulator in both cases of an explosively spreading fire and a gradually growing fire.