• Title/Summary/Keyword: multi-beam

Search Result 1,142, Processing Time 0.029 seconds

Development of Beam Rotating Actuator Based on Voice Coil Motor Type for Mulit-beam Optical Disc System (다중 빔 광디스크 시스템을 위한 자기 구동형 빔 회전 구동기의 개발)

  • Lee, Cheong-Hee;Kim, Soo-Hyun;Kwak, Yoon-Keun
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.17 no.10
    • /
    • pp.83-88
    • /
    • 2000
  • multi-beam optical drive is a method to improve the data transfer rate for the optical disc systems by parallel recording and reading on neighboring multi-tracks. In this paper, the beam rotating actuator, which is necessary for the multi-bean optical disc drive to from beam spots on multi-tracks simultaneously, has been developed. The Voice Coil Motor is used as a drive mechanism for high resolution and small size of the actuator. And rotating guide based on link structure is designed for frictionless and axisless rotation of rotating part including dove prism and for rotating in axis of geometric center of dove prism. The characteristics of the actuator are experimented by laser vibrometer, Polytec OFV1102 and a dynamic analyzer, HP35670A. It shows that the actuator has good linearity, rotating range $\pm0.34^\circ$, minimum rotating angle $0.0066^\circ$and natural frequency 113.9Hz. Therefore the actuator can be applied in a multi-beam optical disc system.

  • PDF

Development of a Monte Carlo Simulator for Electron Beam Lithography in Multi-Layer Resists and Multi-Layer Substrates (다층 리지스트 다층 기판 구조에서의 전자빔 리소그래피 공정을 위한 몬테카를로 시뮬레이터의 개발)

  • 손명식;이진구;황호정
    • Proceedings of the IEEK Conference
    • /
    • 2002.06b
    • /
    • pp.53-56
    • /
    • 2002
  • We have developed a Monte Carlo (MC) simulator for electron beam lithography in multi-layer resists and multi-layer substrates in order to fabricate and develop high-speed PHEMT devices for millimeter- wave applications. For the deposited energy calculation to multi-layer resists by electron beam in MC simulation, we modeled newly for multi-layer resists and heterogeneous multi-layer substrates. Using this model, we simulated T-gate or r-gate fabrication process in PHEMT device and showed our results with SEM observations.

  • PDF

The Development and Performance Analysis of Beam Rotating Actuator for Multi-Beam Disk Drive (다중빔 광디스크용 빔 회전 구동기의 제작과 특성평가)

  • Kim, Byeong-Jun;Kim, Su-Hyeon;Gwak, Yun-Geun
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.24 no.12
    • /
    • pp.3026-3032
    • /
    • 2000
  • To enhance the effective data transfer rate the multi-beam optical disk drive is presented. The Beam rotating actuator is necessary for putting multi-beam on more than one track. Ray tracing was also executed for real system set-up. The beam Rotating Actuator is made up of piezoelectric material, high stiffness wire hinge and dove prism. The actuator has about 1kHz natural frequency and suitable operational range. The dynamic equation for the actuator is derived for the control real system.

Vibration analysis of a multi-span beam subjected to a moving point force using spectral element method

  • Jeong, Boseop;Kim, Taehyun;Lee, Usik
    • Structural Engineering and Mechanics
    • /
    • v.65 no.3
    • /
    • pp.263-274
    • /
    • 2018
  • In this study, we propose a frequency domain spectral element method (SEM) for the vibration analysis of a multi-span beam subjected to a moving point force. This study is an extension of the authors' previous study for a single-span beam subjected to a moving point force, where the two-element model-based SEM was applied. In this study, each span of a multi-span beam is represented by the Timoshenko beam model and the moving point force is transformed into the frequency domain as a series of each stationary point force distributed on the multi-span beam. The span at which a stationary point force is located is represented by two-element model, but all other spans are represented by one-element models. The vibration responses to a moving point force are obtained by superposing all individual vibration responses generated by each stationary point force. The high accuracy and computational efficiency of the proposed SEM are verified by comparing the solutions by SEM with exact analytical solutions by the integral transform method (ITM) as well as the solutions by the finite element method (FEM).

Piezoelectric Beam Rotating Actuator for Multiple Beam Disk Drives (압전소자률 이용한 다중빔 광디스크용 빔 회전 구동기)

  • 김병준;김수현;곽윤근
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.17 no.5
    • /
    • pp.154-159
    • /
    • 2000
  • A multi-beam optical disk drive is presented as a method for improving the effective data transfer rate by increasing the beam spot number formed on an optical disk. The beam rotating actuator is necessary for putting multi-beam on more than one track. The beam rotating actuator is made up of piezoelectric material, high stiffness wire hinge and dove prism. The actuator has good frequency response above 1KHz and suitable operational range. The dynamic equation for the actuator is derived.

  • PDF

On the natural frequencies and mode shapes of a multi-span and multi-step beam carrying a number of concentrated elements

  • Lin, Hsien-Yuan
    • Structural Engineering and Mechanics
    • /
    • v.29 no.5
    • /
    • pp.531-550
    • /
    • 2008
  • This paper adopts the numerical assembly method (NAM) to determine the exact solutions of natural frequencies and mode shapes of a multi-span and multi-step beam carrying a number of various concentrated elements including point masses, rotary inertias, linear springs, rotational springs and springmass systems. First, the coefficient matrix for an intermediate station with various concentrated elements, cross-section change and/or pinned support and the ones for the left-end and right-end supports of a beam are derived. Next, the overall coefficient matrix for the entire beam is obtained using the numerical assembly technique of the conventional finite element method (FEM). Finally, the exact solutions for the natural frequencies of the vibrating system are determined by equating the determinant of the last overall coefficient matrix to zero and the associated mode shapes are obtained by substituting the corresponding values of integration constants into the associated eigenfunctions.

Development of Optimal Design Technique of RC Beam using Multi-Agent Reinforcement Learning (다중 에이전트 강화학습을 이용한 RC보 최적설계 기술개발)

  • Kang, Joo-Won;Kim, Hyun-Su
    • Journal of Korean Association for Spatial Structures
    • /
    • v.23 no.2
    • /
    • pp.29-36
    • /
    • 2023
  • Reinforcement learning (RL) is widely applied to various engineering fields. Especially, RL has shown successful performance for control problems, such as vehicles, robotics, and active structural control system. However, little research on application of RL to optimal structural design has conducted to date. In this study, the possibility of application of RL to structural design of reinforced concrete (RC) beam was investigated. The example of RC beam structural design problem introduced in previous study was used for comparative study. Deep q-network (DQN) is a famous RL algorithm presenting good performance in the discrete action space and thus it was used in this study. The action of DQN agent is required to represent design variables of RC beam. However, the number of design variables of RC beam is too many to represent by the action of conventional DQN. To solve this problem, multi-agent DQN was used in this study. For more effective reinforcement learning process, DDQN (Double Q-Learning) that is an advanced version of a conventional DQN was employed. The multi-agent of DDQN was trained for optimal structural design of RC beam to satisfy American Concrete Institute (318) without any hand-labeled dataset. Five agents of DDQN provides actions for beam with, beam depth, main rebar size, number of main rebar, and shear stirrup size, respectively. Five agents of DDQN were trained for 10,000 episodes and the performance of the multi-agent of DDQN was evaluated with 100 test design cases. This study shows that the multi-agent DDQN algorithm can provide successfully structural design results of RC beam.

Application of a Modular Multi-Gaussian Beam Model to Ultrasonic Wave Propagation with Multiple Interfaces

  • Jeong, Hyun-Jo;Park, Moon-Cheol;Schmerr Lester W.
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.25 no.3
    • /
    • pp.163-170
    • /
    • 2005
  • A modular Gaussian beam model is developed to simulate some ultrasonic testing configurations where multiple interfaces are involved. A general formulation is given in a modular matrix form to represent the Gaussian beam propagation with multiple interfaces. The ultrasonic transducer fields are modeled by a multi-Gaussian beam model which is formed by superposing 10 single Gaussian beams. The proposed model, referred to as "MMGB" (modular multi-Gaussian beam) model, is then applied to a typical contact and angle beam testing configuration to predict the output signal reflected from the corner of a vertical crack. The resulting expressions given in a modular matrix form are implemented in a personal computer using the MATLAB program. Simulation results are presented and compared with available experimental results.