• Title/Summary/Keyword: multi output LLC resonant converter

Search Result 18, Processing Time 0.025 seconds

Multi-Output LLC Resonant Converter (다 출력 LLC 공진 컨버터)

  • Kang, Seong-In;Kim, Joo-Hoon;Kim, Eun-Soo;Park, Jun-Ho;Lee, Jae-Sam;Huh, Dong-Young
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.14 no.4
    • /
    • pp.323-332
    • /
    • 2009
  • In this paper, operating characteristics of multi-output LLC resonant converter are described and analyzed. Especially, voltage gain characteristics and an equivalent resonant frequency in the multi-output LLC resonant converter are changed by the influences due to the several load conditions and the secondary leakage inductances of multi-output transformer. Based on the theoretical analysis and simulation results considered the characteristics of voltage gain and load variation, prototype of the 540W 3-output LLC resonant converter for 42 inch PDP TV power module is built and the experimental results are described.

Analysis of Cross-Regulation Characteristics for Multi-Output LLC Resonant Converter (다중출력 LLC 공진 컨버터의 교차 조절 특성 분석)

  • Jeong, Jin-Woo;Lim, Jeong-Gyu;Kim, Jong-Hae;Oh, Dong-Seong;Chung, Se-Kyo
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.17 no.4
    • /
    • pp.281-290
    • /
    • 2012
  • This paper describes a Cross-regulation characteristics of a multi-output LLC resonant converter widely used in consumer electronics. The output characteristics of the multi-output LLC converter is derived from the assumption that the current and voltage in the resonant network is sinusoidal and the duty loss exists. The simulation and experimental results are provided to verify the theoretic results.

A Study on the Gain Characteristics of Multi-output LLC Series Resonant Converter (다중 출력 LLC 직렬 공진 컨버터의 이득 특성 연구)

  • Lee, Jae-Sam;Park, Jun-Ho;Huh, Dong-Young;Kang, Seong-In;Kim, Joo-Hoon;Kim, Eun-Soo
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.14 no.3
    • /
    • pp.177-187
    • /
    • 2009
  • This paper describes the gain characteristics of Multi-output LLC series resonant converter by using the new analytical method. Specially, using the Math-CAD simulated result, this paper analyzes an influence from the secondary leakage inductance of transformer. The theoretical results are verified through an experimental prototype of the 430W 3-output LLC resonant converter for 46inch PDP power module.

Analysis of Cross-Regulation Characteristics for Multi-Output LLC Resonant Converter (다중출력 LLC 공진 컨버터의 Cross-regulation 특성 분석)

  • Jeong, Jin-Woo;Lim, Jeong-Gyu;Chung, Se-Kyo;Kim, Jong-Hae;Oh, Dong-Sung
    • Proceedings of the KIPE Conference
    • /
    • 2011.07a
    • /
    • pp.151-152
    • /
    • 2011
  • This paper describes a cross-regulation characteristics of a multi-output LLC resonant converter widely used in consumer electronics. The output characteristics of the multi-output LLC converter is derived from the assumption that the current and voltage to flow through the resonant network is sinusoidal and the duty loss is investigated. The simulation results are provided to verify the theoretic results.

  • PDF

High-Efficiency & Cost-Effective Multi-Output LLC Resonant Converter using Single Transformer (단일 변압기를 이용한 고효율.저가격형 다중출력 LLC 공진형 컨버터)

  • Cho, Sang-Ho;Yoon, Jong-Kyu;Roh, Chung-Wook;Hong, Sung-Soo;Kim, Jong-Hae;Lee, Hyo-Bum;Han, Sang-Kyu
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.13 no.6
    • /
    • pp.439-446
    • /
    • 2008
  • The medium power system for the recent electronic products that can perform the multi-function requires various multi-output, high-efficiency and low cost characteristics. To cope with these critical issues, a new high-efficiency and cost-effective multi-output LLC resonant converter is proposed in this paper. The proposed converter requires only 1 power switch instead of the bulky and expensive non-isolated DC/DC converter. Therefore, it features a simple structure, lower cost and high-efficiency. Especially, since the proposed converter can ensure the ZVS or ZCS of all power switches, it has very desirable advantages such as more improved EMI characteristics and reduced switching losses. Finally, to confirm the operation, validity, and features of the proposed circuit, experimental results from a SMPS prototype for 42" FHD PDP TV are presented.

Zero-Current Switching LLC Resonant Post-Regulator for Independent Multi-Output (독립된 다중출력을 위한 영전류 스위칭 LLC 공진형 Post-Regulator)

  • Cho, Sang-Ho;Yoon, Jong-Kyu;Roh, Chung-Wook;Hong, Sung-Soo;Kim, Jong-Hae;Lee, Hyo-Bum;Han, Sang-Kyu
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.14 no.1
    • /
    • pp.46-53
    • /
    • 2009
  • A new zero-current switching LLC resonant post-regulator for multi-output power system is proposed in this paper. A conventional LLC resonant converter employs extra non-isolated DC/DC converters to obtain tight-regulated multi-slave output voltages. Therefore, it has several serious problems such as a poor efficiency and high cost of production. The proposed post-regulator features low voltage and current stress across the output rectifier diodes and power switches. Moreover, the proposed post-regulator requires only one power switch instead of the bulky and expensive non-isolated DC/DC converter. Therefore, it features a simple structure and lower cost. Especially, since the proposed post-regulator can ensure the ZCS of all power switches, it has very desirable advantages such as more improved EMI characteristics and reduced switching losses. Finally, to confirm the operation, validity, and features of the proposed circuit, experimental results from a proposed zero-current LLC resonant post-regulator are presented.

A New Dual Output LLC Resonant DC/DC Converter using Single Control IC (단일 제어 IC를 사용한 새로운 이중출력 LLC 공진형 DC/DC 컨버터)

  • Yoon, Jong-Kyu;Cho, Sang-Ho;Roh, Chung-Wook;Hong, Sung-Soo;Kim, Jong-Hae;Lee, Hyo-Bum;Han, Sang-Kyu
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.13 no.6
    • /
    • pp.453-460
    • /
    • 2008
  • This paper proposes a new multi-output LLC resonant converter by using single control IC, which has the tight-regulated dual output voltage without additional power devices and controller. The proposed converter has master and slave outputs, of which regulations are achieved by the PWM(pulse width modulation) and PFM(pulse frequency modulation), respectively. Different from the conventional dual-output LLC resonant converter, the proposed converter has no additional post-regulators like a boost converter. Therefore, it features a low cost, small size, and high efficiency. To confirm the validity and prove the superiority of proposed converter, simulated and experimental results on a 50" FHD PDP power set prototype are presented.

Research on the Multi - purpose Nd:YAG Laser Power System using LLC Converter (LLC 공진형 컨버터를 사용한 다용도 Nd:YAG 레이저 전원장치 설계)

  • Zheng, Tao;Kim, Hee-Je;Lee, Jae-cheol;Xu, Guo-Cheng
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.64 no.6
    • /
    • pp.885-890
    • /
    • 2015
  • LLC resonant converter has been widely used because of its high efficiency and high energy density. In this paper, we designed a LLC resonant converter as the main power supply of the Nd:YAG pulse laser. First harmonic approximation (FHA) is used to model the LLC resonant converter. FHA equivalent circuit model and the transfer function of the LLC resonant converter is proposed. Soft start technology is also used to suppress the surge current. The laser output simulation test result is identical with the practical test, the laser energy of every pulse can reach up to 2.5J, and the pulse per second (PPS) can be adjusted from 6 to 18. The power system is verified stable and reliable by both of the simulation and experiment results.

An Optimization Design of the Diode Clamped Multi-Level Converter for Coaxial Inductive Power Transfer on the Low Voltage DC Micro-grid

  • Pairindra, Worapong;Khomfoi, Surin
    • Journal of Electrical Engineering and Technology
    • /
    • v.13 no.1
    • /
    • pp.333-344
    • /
    • 2018
  • This proposed paper aims for the high efficiency contactless power transfer in household dc power distribution. A 300 W five-level diode clamped multi-level converter with 300 Vdc input dc link bus is employed for the power transferring task and the output voltage range is controlled at 48 Vdc. The inner and outer solenoid coils are used for inductive power transfer (IPT) transformer with the 200 kHz switching frequency for designed power density. Therefore, to achieve the converter efficiency above 95%, the LLC series resonant with fundamental harmonic analysis (FHA) and the calculated switching angles are used as an optimized tool for designing the system resonant tank. The validations of this approached topology are illustrated in both MATLAB/Simulink simulation and implementation.

Analysis and Design of a Multi-resonant Converter with a Wide Output Voltage Range for EV Charger Applications

  • Sun, Wenjin;Jin, Xiang;Zhang, Li;Hu, Haibing;Xing, Yan
    • Journal of Power Electronics
    • /
    • v.17 no.4
    • /
    • pp.849-859
    • /
    • 2017
  • This paper illustrates the analysis and design of a multi-resonant converter applied to an electric vehicle (EV) charger. Thanks to the notch resonant characteristic, the multi-resonant converter achieve soft switching and operate with a narrowed switching frequency range even with a wide output voltage range. These advantages make it suitable for battery charging applications. With two more resonant elements, the design of the chosen converter is more complex than the conventional LLC resonant converter. However, there is not a distinct design outline for the multi-resonant converters in existing articles. According to the analysis in this paper, the normalized notch frequency $f_{r2n}$ and the second series resonant frequency $f_{r3n}$ are more sensitive to the notch capacitor ratio q than the notch inductor ratio k. Then resonant capacitors should be well-designed before the other resonant elements. The peak gain of the converter depends mainly on the magnetizing inductor ratio $L_n$ and the normalized load Q. And it requires a smaller $L_n$ and Q to provide a sufficient voltage gain $M_{max}$ at ($V_{o\_max}$, $P_{o\_max}$). However, the primary current increases with $(L_nQ)^{-1}$, and results in a low efficiency. Then a detailed design procedure for the multi-resonant converter has been provided. A 3.3kW prototype with an output voltage range of 50V to 500V dc and a peak efficiency of 97.3 % is built to verify the design and effectiveness of the converter.