• Title/Summary/Keyword: multi material

Search Result 2,515, Processing Time 0.062 seconds

Micromechanical Finite Element Analysis and Effective Material Property Evaluation of Composite Materials (미시역학을 고려한 복합재료의 유한요소해석 및 유효 물성치 평가)

  • 이승표;정재연;하성규
    • Proceedings of the Korean Society For Composite Materials Conference
    • /
    • 2003.04a
    • /
    • pp.220-223
    • /
    • 2003
  • The methodology of micromechanical finite element method (MFEM) is proposed to calculate the micromechanical strains on fiber and matrix under mechanical and thermal loadings. For micromechanical analysis, composite structure is idealized the square and hexagonal unit cells. Boundary conditions are determined to calculate the effective material properties of composites and the strain magnification matrix. And they are verified by comparing with the results from multi cells, and the strain distributions of the unit cells are in accordance with those of the multi cells. Finally, the effective material properties of composite structure are obtained with respect to its fiber volume fraction and compared with results from rules-of-mixture.

  • PDF

Multiphase Flow Modeling of Molten Material-Vapor-Liquid Mixtures in Thermal Nonequilibrium

  • Park, Ik-Kyu;Park, Goon-Cherl;Bang, Kwang-Hyun
    • Journal of Mechanical Science and Technology
    • /
    • v.14 no.5
    • /
    • pp.553-561
    • /
    • 2000
  • This paper presents a numerical model of multi phase flow of the mixtures of molten material-liquid-vapor, particularly in thermal nonequilibrium. It is a two-dimensional, transient, three-fluid model in Eulerian coordinates. The equations are solved numerically using the finite difference method that implicitly couples the rates of phase changes, momentum, and energy exchange to determine the pressure, density, and velocity fields. To examine the model's ability to predict an experimental data, calculations have been performed for tests of pouring hot particles and molten material into a water pool. The predictions show good agreement with the experimental data. It appears, however, that the interfacial heat transfer and breakup of molten material need improved models that can be applied to such high temperature, high pressure, multi phase flow conditions.

  • PDF

Numerical Analysis of Palladium added Carbon Fiber/Al using Extended Finite Element Method and Multiscale Technique (확장유한요소법과 멀티스케일 기법을 통한 팔라듐 첨가 탄소섬유/알루미늄 적층구조에 대한 수치해석)

  • Park, Woo Rim;Kwon, Oh Heon
    • Journal of the Korean Society of Safety
    • /
    • v.34 no.2
    • /
    • pp.7-14
    • /
    • 2019
  • A palladium can adsorb hydrogen and detect leaking hydrogen through changes in color and electrical resistance. This study is to evaluate the structural behavior of carbon fiber adding palladium composite materials used in the hydrogen storage vessel. A multi-scale analysis technique was used to analyze accurately the behavior of each material in relation to the microscopic composition. The multi-scale analysis is more proper and precise for composite materials because of considering the individual microscopic structure and properties of each material for composite materials. Also the crack evaluation was performed by XFEM analysis to confirm the reinforcement performance of aluminum as a liner of the hydrogen vessel. The results show that the addition of the palladium material increased the macroscopic stress, but microscopically the carbon fiber stress was reduced. It means the performance improvement of the palladium added carbon fiber/Al composite.

Multi-product, multi-site production and transportation scheduling problem (다품종 복수공장 생산에서의 생산분배 및 수송계획 문제연구)

  • 장병만
    • Proceedings of the Korean Operations and Management Science Society Conference
    • /
    • 1993.04a
    • /
    • pp.36-45
    • /
    • 1993
  • This paper presents a model and a heuristic procedure to design production planning and transportation scheduling systems of critical items, components and products on the basis of material requirement planning concept and transportation planning model. These systems are stemmed from a multi-site multi-product production company in a international economic zone. An example is provided to validate the heuristic procedure developed.

  • PDF

Highly Efficient Multi-Functional Material for Organic Light-Emitting Diodes; Hole Transporting Material, Blue and White Light Emitter

  • Kim, Myoung-Ki;Kwon, Jong-Chul;Hong, Jung-Pyo;Lee, Seong-Hoon;Hong, Jong-In
    • Bulletin of the Korean Chemical Society
    • /
    • v.32 no.spc8
    • /
    • pp.2899-2905
    • /
    • 2011
  • We have demonstrated that TPyPA can be used as an efficient multi-functional material for OLEDs; hole transporting material (HTL), blue and white-light emitter. The device based on TPyPA as the HTL exhibited an external quantum efficiency of 1.7% and a luminance efficiency of 4.2 cd/A; these values are 40% higher than the external quantum efficiency and luminance efficiency of the NPD-based reference device. The device based on TPyPA as a blue-light emitter exhibited an external quantum efficiency of 4.2% and a luminance efficiency of 5.3 $cdA^{-1}$ with CIE coordinates at (0.16, 0.14), the device based on TPyPA as a white-light emitter exhibited an external quantum efficiency of 3.2% and a luminance efficiency of 7.7 $cdA^{-1}$ with CIE coordinates at (0.33, 0.39). Also, TPyPA-based organic solar cell (OSC) exhibited a maximum power conversion efficiency of 0.35%. TPyPA-based organic thin-film transistors (OTFTs) exhibited highly efficient field-effect mobility (${\mu}_{FET}$) of $1.7{\times}10^{-4}cm^2V^{-1}s^{-1}$, a threshold voltage ($V_{th}$) of -15.9 V, and an on/off current ratio of $8.6{\times}10^3$.

Study on Optical Characteristics of Nano Hollow Silica with TiO2 Shell Formation

  • Roh, Gi-Yeon;Sung, Hyeong-Seok;Lee, Yeong-Cheol;Lee, Seong-Eui
    • Journal of the Korean Ceramic Society
    • /
    • v.56 no.1
    • /
    • pp.98-103
    • /
    • 2019
  • Optical filters to control light wavelength of displays or cameras are fabricated by multi-layer stacking process of low and high index thin films. The process of multi-layer stacking of thin films has received much attention as an optimal process for effective manufacturing in the optical filter industry. However, multi-layer processing has disadvantages of complicated thin film process, and difficulty of precise control of film morphology and material selection, all of which are critical for transmittance and coloring effect on filters. In this study, the composite $TiO_2$, which can be used to control of UV absorption, coated on nano hollow silica sol, was synthesized as a coating material for optical filters. Furthermore, systematic analysis of the process parameters during the chemical reaction, and of the structural properties of the coating solutions was performed using SEM, TEM, XRD and photo spectrometry. From the structural analysis, we found that the 85 nm nano hollow silica with 2.5 nm $TiO_2$ shell formation was successfully synthesized at proper pH control and titanium butoxide content. Photo luminescence characteristics, excited by UV irradiation, show that stable absorption of 350 nm-light, correlated with a 3.54 eV band gap, existed for the $TiO_2$ shell-nano hollow silica reacted with 8.8 mole titanium butoxide solution. Transmittance observed on substrate of the $TiO_2$ shell-nano hollow silica showed effective absorption of 200-300 nm UV light without deterioration of visible light transparency.

The comparison of electron transport coefficients of gases for analysis of multi-term approximation of the Boltzmann equation (다항근사 볼츠만 방정식의 타당성 검토를 위한 가스의 전자수송계수 비교)

  • Song, Byoung-Doo;Ha, Sung-Chul;Jeon, Byoung-Hoon
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2003.05e
    • /
    • pp.69-72
    • /
    • 2003
  • This paper describes the information for the difference between two-term and multi-term approximation of the Boltzmann. In previous paper, we calculated the electron transport coefficients in pure Oxygen and Argon gases by using two-term approximation of Boltzmann equation. Therefore, in this paper, we calculated the electron transport coefficients(W and $N{\cdot}D_L$) in pure Oxygen and Argon gases for range of E/N values from 0.01~500[Td] at the temperature was 300[K] and pressure was 1[Torr] by using multi-term approximation of the Boltzmann equation by Robson and Ness, The results of two-term and multi-term approximation of the Boltzmann equation has been compared with the experimental data for a range of E/N.

  • PDF

A 3D FEA Model with Plastic Shots for Evaluation of Peening Residual Stress due to Multi-Impacts (다중충돌 피닝잔류응력 평가를 위한 소성숏이 포함된 3차원 유한요소해석 모델)

  • Kim, Tae-Hyung;Lee, Hyungy-Il
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.32 no.8
    • /
    • pp.642-653
    • /
    • 2008
  • In this paper, we propose a 3-D finite element (FE) analysis model with combined physical behavior and kinematical impact factors for evaluation of residual stress in multi-impact shot peening. The FE model considers both physical behavior of material and characteristics of kinematical impact. The physical parameters include elastic-plastic FE modeling of shot ball, material damping coefficient, dynamic friction coefficient. The kinematical parameters include impact velocity and diameter of shot ball. Multi-impact FE model consists of 3-D symmetry-cell. We can describe a certain repeated area of peened specimen under equibiaxial residual stress by the cell. With the cell model, we investigate the FE peening coverage, dependency on the impact sequence, effect of repeated cycle. The proposed FE model provides converged and unique solution of surface stress, maximum compressive residual stress and deformation depth at four impact positions. Further, in contrast to the rigid and elastic shots, plastically deformable shot produces residual stresses closer to experimental solutions by X-ray diffraction. Consequently, it is confirmed that the FE model with peening factors and plastic shot is valid for multi-shot peening analyses.

Investigation of Wet Chemical Etching for Surface Texturing of Multi-crystalline Silicon Wafers (다결정 실리콘 웨이퍼의 표면 텍스쳐링을 위한 습식 화학 식각에 대한 연구)

  • Kim, Bum-Ho;Lee, Hyun-Woo;Lee, Eun-Joo;Lee, Soo-Hong
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2006.11a
    • /
    • pp.19-20
    • /
    • 2006
  • Two methods that can reduce reflectance in solar cells are surface texturing and anti-reflection coating. Wet chemical etching is a typical method that surface texturing of multi-crystalline silicon. Wet chemical etching methods are the acid texturization of saw damage on the surface of multi-crystalline silicon or double-step chemical etching after KOH saw damage removal too. These methods of surface texturing are realized by chemical etching in acid solutions HF-$HNO_3$-$H_2O$. In this solutions we can reduce reflectance spectra by simple process etching of multi-crystalline silicon surface. We have obtained reflectance of 27.19% m 400~1100nm from acidic chemical etching after KOH saw damage removal. This result is about 7% less than just saw damage removal substrate. The surface morphology observed by microscope and scanning electron microscopy (SEM).

  • PDF