• 제목/요약/키워드: multi level inverters

검색결과 65건 처리시간 0.022초

25MW급 대용량 멀티레벨 인버터의 시뮬레이션 기반 손실해석과 출력특성 비교 분석 (Simulation based Comparative Loss Analysis and Output Characteristic for 25MW Class of High Power Multi-level Inverters)

  • 김이김;박찬배;백제훈;곽상신
    • 전력전자학회논문지
    • /
    • 제20권4호
    • /
    • pp.337-343
    • /
    • 2015
  • The multi-level inverters are highly efficient for high-power and medium-voltage AC driving applications, such as high-speed railway systems and renewable energy resources, because such inverters generate lower total harmonic distortion (THD) and electromagnetic interface (EMI). Lower switching stress occurs on switching devices compared with conventional two-level inverters. Depending on the multi-level inverter topology, the required components and number of switching devices are different, influencing the overall efficiency. Comparative studies of multi-level inverters based on loss analysis and output characteristic are necessary to apply multi-level inverters in high-power AC conversion systems. This paper proposes a theoretical loss analysis method based on piecewise linearization of characteristic curves of power semiconductor devices as well as loss analysis and output performance comparison of five-level neutral-point clamped, flying capacitor inverters, and high-level cascaded H-bridge multi-level inverters.

멀티레벨 인버터와 다상 유도기를 이용한 견인기용 대전력 VSI의 구조와 특성 (Configurations of High Power VSI Drives for Traction Applications Using Multi Level Inverters and Multi Phase Induction Motors)

  • ;류홍제;김종수;임근희
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 1997년도 추계학술대회 논문집 학회본부
    • /
    • pp.500-504
    • /
    • 1997
  • Current source inverter drives of auto sequentially commutated type are very popular in high power applications, because of simple power circuit configuration with four quadrant operation. But the six-step current output create harmonic problems and the input power factor of such a drive is not always good. In this respect pulse width modulated drives using gate turn off thyristors ( GTO ) are finding application, especially in traction drives. However the switching and snubber loses of a GTO do not permit the inverter switching frequency go beyond a few hundred hertz.This will again introduce low frequency harmonic problems. Multi level inverters of the 3-level and 5-level can be considered as an alternative to overcome the low switching frequency harmonic problem of the 2-level GTO inverters. But with multi level inverters the complexity of the power circuit increases. In this paper a combination of multi level ( 2-level and 3-level ) inverters and multi phase induction motor ( 3-phase and 6-phase) configurations are presented for high power VSI drives for traction applications with reduced inverter switching frequency requirements coupled with reduced voltage rating for the power switch.

  • PDF

양방향 스위치를 이용한 H-bridge 구조의 새로운 멀티레벨 인버터 (A New Multilevel Inverter of H-bridge Topology using Bidirection Switch)

  • 이상혁;강성구;이태원;허민호;박성준
    • 전력전자학회논문지
    • /
    • 제17권4호
    • /
    • pp.291-297
    • /
    • 2012
  • Recently, Switching devices become cheaper, depending on the multi-level inverters are considered as the power-conversion systems for high-power and power-quality demanding applications. The multi-level inverters can reduce the THD(Total Harmonic Distortion) as the output which is similar sinusoidal waveform by synthesizing several capacitor DC voltages. However it has some disadvantages such as increased number of components, complex PWM control method. Therefore, this paper is proposed the new multi-level inverter topology using an new H-bridge output stage with a bidirectional auxiliary switch. The proposed topology is the 4-level 3-phase PWM inverter with less switching part than conventional multi-level inverters and reactive power control possible. In order to understand the new multi-level inverter, topology analysis and switching patterns and modes according to the current loop are described in this paper. The proposed multi-level inverter topology is validated through PSIM simulation and the experimental results are provided from a prototype.

멀티레벨 인버터의 순간정전 보상알고리즘에 관한 연구 (Voltage Dip Compensation Algorithm Using Multi-Level Inverter)

  • 윤홍민;김용
    • 조명전기설비학회논문지
    • /
    • 제27권12호
    • /
    • pp.133-140
    • /
    • 2013
  • Cascaded H-Bridge multi-level inverters can be implemented through the series connection of single-phase modular power bridges. In recent years, multi-level inverters are becoming increasingly popular for high power applications due to its improved harmonic profile and increased power ratings. This paper presents a control method for balancing the dc-link voltage and ride-through enhancement, a modified pulse width-modulation Compensation algorithm of cascaded H-bridge multi-level inverters. During an under-voltage protection mechanism, causing the system to shut down within a few milliseconds after a power interruption in the main input sources. When a power interruption occurs finish, if the system is a large inertia restarting the load a long time is required. This paper suggests modifications in the control algorithm in order to improve the sag ride-through performance of ac inverter. The new proposed strategy recommends maintaining the DC-link voltage constant at the nominal value during a sag period, experimental results are presented.

Low Frequency Multi-Level Switching Strategy Based on Phase-Shift Control Methods

  • Lee, Sang-Hun;Song, Sung-Geon;Park, Sung-Jun
    • Journal of international Conference on Electrical Machines and Systems
    • /
    • 제1권3호
    • /
    • pp.366-371
    • /
    • 2012
  • In this paper, we propose an electric circuit using one common-arm of H-Bridge inverters to reduce the number of switching components in the multi-level inverter combined with H-Bridge inverters and transformers. And furthermore, we suggested a new multi-level PWM inverter using PWM level to reduce THD (Total Harmonic Distortion). We use a phase-shift switching method that has the same rate of usage at each transformer. Also, we test the proposed prototype 9-level inverter to clarify the proposed electric circuit and reasonableness of the control signal for the proposed multi-level PWM inverter.

위상 변위제어기법을 이용한 저주파 다중레벨 스위칭 방식 (Low frequency Multi-level Switching Strategy based on Phase-Shift Control)

  • 우도;문채주;박성준;남해곤;권순재
    • 전력전자학회:학술대회논문집
    • /
    • 전력전자학회 2005년도 전력전자학술대회 논문집
    • /
    • pp.673-676
    • /
    • 2005
  • In this paper, we proposed the electric circuit using one common arm of H-Bridge Inverters to reduce the number of switching component in multi-level inverter combined with H-Bridge Inverters and Transformers. and furthermore we suggested the new multi-level PWM inverter using PWM level to reduce THD(Total Harmonic Distortion). and we used the switching method that can be same rate of usage at each transformer. Also, we tested the proposed prototype 9-level inverter to clarify the proposed electric circuit and reasonableness of control signal for the proposed multi-level PWM inverter.

  • PDF

공통암을 이용한 새로운 다중레벨 PWM 인버터 (Novel Multi-Level PWM Inverter Using The Common Arm)

  • 송성근;우도;이상훈;조수억;문채주;김철우;박성준
    • 대한전기학회논문지:전기기기및에너지변환시스템부문B
    • /
    • 제54권4호
    • /
    • pp.195-200
    • /
    • 2005
  • In this paper, we proposed the electric circuit using one common arm of H-Bridge Inverters to reduce the number of switching component in multi-level inverter combined with H-Bridge Inverters and Transformers. and furthermore we suggested the new multi-level PWM inverter using PWM level to reduce THD(Total Harmonic Distortion). and we used the switching method that can be same rate of usage at each transformer. Also, we tested the proposed prototype 9-level inverter to clarify the proposed electric circuit and reasonableness of control signal for the proposed multi-level PWM inverter.

상신호 변위기법을 이용한 다중레벨 인버터의 스위칭주파수 저감기법 (Switching Frequency Reducing Method of Multi-level Inverter Using Phase Shift Control)

  • 박노식;송성근;박성준;남해곤;강필순;김철우
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2005년도 제36회 하계학술대회 논문집 B
    • /
    • pp.1477-1479
    • /
    • 2005
  • In this paper, we proposed the electric circuit using one common arm of H-Bridge inverters to reduce the number of switching component in multi-level inverter combined with H-Bridge Inverters and Transformers. and furthermore we suggested the new multi-level PWM inverter using PWM level to reduce THD(Total Harmonic Distortion) and we used the switching method that can be same rate of usage at each transformer. Also, we tested the proposed prototype 15-level inverter to clarify the proposed electric circuit and reasonableness of control signal for the proposed multi-level PWM inverter.

  • PDF

고속전철 추진시스템을 위한 멀티레벨 전력변환기의 제어기법 및 SVPWM 모델링 (Modeling of SVPWM and Control Method for Driving Systems of High-speed Trains by using Multi-level Power Converters)

  • 이동명;홍찬희
    • 조명전기설비학회논문지
    • /
    • 제23권12호
    • /
    • pp.136-145
    • /
    • 2009
  • 고속 철도 추진시스템의 고속화 및 급전시스템의 전력 품질향상을 위한 연구가 현재 활발히 진행되고 있으며 이를 위한 멀티레벨 전력변환기를 적용한 고속전철 추진시스템의 연구가 필요하다. 본 논문은 멀티레벨 전력변환기의 제어기법 및 공간전압벡터 변조기법(Space Vector PWM, SVPWM)의 모델을 제안한다. 단상 컨버터 제어방식으로는 널리 사용되고 있는 순시치 전류제어 방식을 대신하여, 과도상태 개선 및 제어 속응성을 향상시키기 위하여 동기좌표계에서의 전류 제어 방식을 사용한 제어기법을 적용하였으며, 단상 멜티레벨 컨버터 및 3레벨 인버터에 적용되는 SVPWM기법의 시뮬레이션 모델을 제안하고 인버터 축소모델을 통하여 모델링의 타당성을 보인다.

Cascaded H-Bridge 멀티레벨 인버터를 위한 개선된 모델 예측 제어 방법 (Improved Model Predictive Control Method for Cascaded H-Bridge Multilevel Inverters)

  • 노찬;김재창;곽상신
    • 전기학회논문지
    • /
    • 제67권7호
    • /
    • pp.846-853
    • /
    • 2018
  • In this paper, an improved model predictive control (MPC) method is proposed, which reduces the amount of calculations caused by the increased number of candidate voltage vectors with the increased voltage level in multi-level inverters. When the conventional MPC method is used for multi-level inverters, all candidate voltage vectors are considered to predict the next-step current value. However, in the case that the sampling time is short, increased voltage level makes it difficult to consider the all candidate voltage vectors. In this paper, the improved MPC method which can get a fast transient response is proposed with a small amount of the computation by adding new candidate voltage vectors that are set to find the optimal vector. As a result, the proposed method shows faster transient response than the method that considers the adjacent vectors and reduces the computational burden compared to the method that considers the whole voltage vector. the performance of the proposed method is verified through simulations and experiments.