• Title/Summary/Keyword: moving subtraction method

Search Result 63, Processing Time 0.023 seconds

Comparison of Two Methods for Stationary Incident Detection Based on Background Image

  • Ghimire, Deepak;Lee, Joonwhoan
    • Smart Media Journal
    • /
    • v.1 no.3
    • /
    • pp.48-55
    • /
    • 2012
  • In general, background subtraction based methods are used to detect the moving objects in visual tracking applications. In this paper we employed background subtraction based scheme to detect the temporarily stationary objects. We proposed two schemes for stationary object detection and we compare those in terms of detection performance and computational complexity. In the first approach we used single background and in the second approach we used dual backgrounds, generated with different learning rates, in order to detect temporarily stopped object. Finally, we used normalized cross correlation (NCC) based image comparison to monitor and track the detected stationary object in a video scene. The proposed method is robust with partial occlusion, short time fully occlusion and illumination changes, as well as it can operate in real time.

  • PDF

Shadow Removal Based on Chromaticity and Entropy for Efficient Moving Object Tracking (효과적인 이동물체 추적을 위한 색도 영상과 엔트로피 기반의 그림자 제거)

  • Park, Ki-Hong
    • Journal of Advanced Navigation Technology
    • /
    • v.18 no.4
    • /
    • pp.387-392
    • /
    • 2014
  • Recently, various research for intelligent video surveillance system have been proposed, but the existing monitoring systems are inefficient because all of situational awareness is judged by the human. In this paper, shadow removal based moving object tracking method is proposed using the chromaticity and entropy image. The background subtraction model, effective in the context awareness environment, has been applied for moving object detection. After detecting the region of moving object, the shadow candidate region has been estimated and removed by RGB based chromaticity and minimum cross entropy images. For the validity of the proposed method, the highway video is used to experiment. Some experiments are conducted so as to verify the proposed method, and as a result, shadow removal and moving object tracking are well performed.

A Study on the Moving Object Tracking System Using Multi-feature Matching (다양한 특징 매칭을 이용한 움직이는 물체 추적 시스템에 관한 연구)

  • Piao, Zai-Jun;Kim, Sun-Woo;Choi, Yeon-Sung;Park, Chun-Bae;Ha, Tae-Ryeong
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.11 no.4
    • /
    • pp.786-792
    • /
    • 2007
  • Moving object tracking is very important in video surveillance system. This paper presents a method for tracking moving objects in an outdoor environment. To moving object tracking, first, after extract object that move yielding weight subtraction image and then use close operator to reduce the noise. And we track a object that move detected by matching the extracted multi-feature information. The proposed tracking technique can track moving object by multi-feature matching method so that exactly tracking the objects which are suddenly move or stop. The proposed tracking technique can be efficiently tracking the moving objects, because of combined with spatial position, shape and intensity informations.

Fast foreground extraction with local Integral Histogram (지역 인테그럴 히스토그램을 사용한 빠르고 강건한 전경 추출 방법)

  • Jang, Dong-Heon;Jin, Xiang-Hua;Kim, Tae-Yong
    • 한국HCI학회:학술대회논문집
    • /
    • 2008.02a
    • /
    • pp.623-628
    • /
    • 2008
  • We present a new method of extracting foreground object from background image for vision-based game interface. Background Subtraction is an important preprocessing step for extracting the features of tracking objects. The image is divided into the cells where the Local Histogram with Gaussian kernel is computed and compared with the corresponding one using Bhattacharyya distance measure. The histogram-based method is partially robust against illumination change, noise and small moving objects in background. We propose a Multi-Scaled Integral Histogram approach for noise suppression and fast computation.

  • PDF

Efficient Learning and Classification for Vehicle Type using Moving Cast Shadow Elimination in Vehicle Surveillance Video (차량 감시영상에서 그림자 제거를 통한 효율적인 차종의 학습 및 분류)

  • Shin, Wook-Sun;Lee, Chang-Hoon
    • The KIPS Transactions:PartB
    • /
    • v.15B no.1
    • /
    • pp.1-8
    • /
    • 2008
  • Generally, moving objects in surveillance video are extracted by background subtraction or frame difference method. However, moving cast shadows on object distort extracted figures which cause serious detection problems. Especially, analyzing vehicle information in video frames from a fixed surveillance camera on road, we obtain inaccurate results by shadow which vehicle causes. So, Shadow Elimination is essential to extract right objects from frames in surveillance video. And we use shadow removal algorithm for vehicle classification. In our paper, as we suppress moving cast shadow in object, we efficiently discriminate vehicle types. After we fit new object of shadow-removed object as three dimension object, we use extracted attributes for supervised learning to classify vehicle types. In experiment, we use 3 learning methods {IBL, C4.5, NN(Neural Network)} so that we evaluate the result of vehicle classification by shadow elimination.

Object Segmentation/Detection through learned Background Model and Segmented Object Tracking Method using Particle Filter (배경 모델 학습을 통한 객체 분할/검출 및 파티클 필터를 이용한 분할된 객체의 움직임 추적 방법)

  • Lim, Su-chang;Kim, Do-yeon
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.20 no.8
    • /
    • pp.1537-1545
    • /
    • 2016
  • In real time video sequence, object segmentation and tracking method are actively applied in various application tasks, such as surveillance system, mobile robots, augmented reality. This paper propose a robust object tracking method. The background models are constructed by learning the initial part of each video sequences. After that, the moving objects are detected via object segmentation by using background subtraction method. The region of detected objects are continuously tracked by using the HSV color histogram with particle filter. The proposed segmentation method is superior to average background model in term of moving object detection. In addition, the proposed tracking method provide a continuous tracking result even in the case that multiple objects are existed with similar color, and severe occlusion are occurred with multiple objects. The experiment results provided with 85.9 % of average object overlapping rate and 96.3% of average object tracking rate using two video sequences.

A Study on Improving the Adaptive Background Method for Outdoor CCTV Object Tracking System

  • Jung, Do-Wook;Choi, Hyung-Il
    • Journal of the Korea Society of Computer and Information
    • /
    • v.20 no.7
    • /
    • pp.17-24
    • /
    • 2015
  • In this paper, we propose a method to solve ghosting problem. To generate adaptive background, using an exponentially decreasing number of frames, may improve object detection performance. To extract moving objects from the background by using a differential image, detection error may be caused by object rotations or environmental changes. A ghosting problem can be issue-driven when there are outdoor environmental changes and moving objects. We studied that a differential image by adaptive background may reduce the ghosting problem. In experimental results, we test that our method can solve the ghosting problem.

Maritime Object Segmentation and Tracking by using Radar and Visual Camera Integration

  • Hwang, Jae-Jeong;Cho, Sang-Gyu;Lee, Jung-Sik;Park, Sang-Hyon
    • Journal of information and communication convergence engineering
    • /
    • v.8 no.4
    • /
    • pp.466-471
    • /
    • 2010
  • We have proposed a method to detect and track moving ships using position from Radar and image processor. Real-time segmentation of moving regions in image sequences is a fundamental step in the radar-camera integrated system. Algorithms for segmentation of objects are implemented by composing of background subtraction, morphologic operation, connected components labeling, region growing, and minimum enclosing rectangle. Once the moving objects are detected, tracking is only performed upon pixels labeled as foreground with reduced additional computational burdens.

Detection and Recognition of Illegally Parked Vehicles Based on an Adaptive Gaussian Mixture Model and a Seed Fill Algorithm

  • Sarker, Md. Mostafa Kamal;Weihua, Cai;Song, Moon Kyou
    • Journal of information and communication convergence engineering
    • /
    • v.13 no.3
    • /
    • pp.197-204
    • /
    • 2015
  • In this paper, we present an algorithm for the detection of illegally parked vehicles based on a combination of some image processing algorithms. A digital camera is fixed in the illegal parking region to capture the video frames. An adaptive Gaussian mixture model (GMM) is used for background subtraction in a complex environment to identify the regions of moving objects in our test video. Stationary objects are detected by using the pixel-level features in time sequences. A stationary vehicle is detected by using the local features of the object, and thus, information about illegally parked vehicles is successfully obtained. An automatic alarm system can be utilized according to the different regulations of different illegal parking regions. The results of this study obtained using a test video sequence of a real-time traffic scene show that the proposed method is effective.

Adaptive Gaussian Mixture Learning for High Traffic Region (혼잡한 환경에서 적응적 가우시안 혼합 모델을 이용한 배경의 학습 및 객체 검출)

  • Park Dae-Yong;Kim Jae-Min;Cho Seong-Won
    • The Transactions of the Korean Institute of Electrical Engineers D
    • /
    • v.55 no.2
    • /
    • pp.52-61
    • /
    • 2006
  • For the detection of moving objects, background subtraction methods are widely used. An adaptive Gaussian mixture model combined with probabilistic learning is one of the most popular methods for the real-time update of the complex and dynamic background. However, probabilistic learning approach does not work well in high traffic regions. In this paper, we Propose a reliable learning method of complex and dynamic backgrounds in high traffic regions.