• 제목/요약/키워드: moving subtraction method

검색결과 63건 처리시간 0.023초

Comparison of Two Methods for Stationary Incident Detection Based on Background Image

  • Ghimire, Deepak;Lee, Joonwhoan
    • 스마트미디어저널
    • /
    • 제1권3호
    • /
    • pp.48-55
    • /
    • 2012
  • In general, background subtraction based methods are used to detect the moving objects in visual tracking applications. In this paper we employed background subtraction based scheme to detect the temporarily stationary objects. We proposed two schemes for stationary object detection and we compare those in terms of detection performance and computational complexity. In the first approach we used single background and in the second approach we used dual backgrounds, generated with different learning rates, in order to detect temporarily stopped object. Finally, we used normalized cross correlation (NCC) based image comparison to monitor and track the detected stationary object in a video scene. The proposed method is robust with partial occlusion, short time fully occlusion and illumination changes, as well as it can operate in real time.

  • PDF

효과적인 이동물체 추적을 위한 색도 영상과 엔트로피 기반의 그림자 제거 (Shadow Removal Based on Chromaticity and Entropy for Efficient Moving Object Tracking)

  • 박기홍
    • 한국항행학회논문지
    • /
    • 제18권4호
    • /
    • pp.387-392
    • /
    • 2014
  • 최근 지능형 비디오 감시를 위한 다양한 연구가 제안되고 있음에도 CCTV 영상에서 이상 징후 판단이 사람에 의해 이루어지고 있어 상황인식을 위한 방법 및 연구가 필요하다. 본 논문에서는 이동물체 검출 및 추적을 위해 RGB 칼라 모델 기반의 색도 영상과 엔트로피 영상을 도출하여 그림자 제거를 수행한 후 이동물체를 추적하는 방법을 제안한다. 이동물체 검출을 위해 잡음 및 주위환경변화에 민감하지만 순간적으로 발생되는 상황인지 환경에서 효과적인 차영상 모델을 적용하였다. 검출한 이동물체 영역에서 RGB 채널의 색도 영상을 기반으로 첫 번째 그림자 후보 영역을 선정하였고, 그레이레벨에서 엔트로피를 계산하여 두 번째 그림자 후보 영역을 추정하여 그림자를 제거하였다. 제안하는 방법의 타당성을 위해 고속도로에서 주행하는 자동차들을 대상으로 실험하였고, 실험 결과 색상과 엔트로피를 이용한 그림자를 제거와 이동물체 추적이 효과적으로 수행됨을 확인하였다.

다양한 특징 매칭을 이용한 움직이는 물체 추적 시스템에 관한 연구 (A Study on the Moving Object Tracking System Using Multi-feature Matching)

  • 박재준;김선우;최연성;박춘배;하태령
    • 한국정보통신학회논문지
    • /
    • 제11권4호
    • /
    • pp.786-792
    • /
    • 2007
  • 비디오 감시 시스템에서 물체의 추적은 매우 중요하다. 본 논문에서는 외부 환경에서 움직이는 물체를 추적하는 방법을 제안한다. 움직이는 물체를 추적하기 위하여 먼저 가중치 차 영상을 구하여 움직이는 물체를 추출한 후 다시 닫힘 연산을 사용하여 잡음을 제거한다. 그리고 추출된 다양한 특징 정보로 매칭하여 움직이는 물체를 추적한다. 제안된 추적 방법은 가중치 차 영상을 사용하여 움직이는 물체를 추적하기에 정지된 물체가 갑자기 움직이거나 갑자기 멈출 때도 정확히 추적할 수 있다. 본 논문에서 제안한 추적 시스템은 공간위치, 형상과 명암도 특징을 종합하기에 움직이는 물체를 보다 더 효과적으로 추적할 수 있다.

지역 인테그럴 히스토그램을 사용한 빠르고 강건한 전경 추출 방법 (Fast foreground extraction with local Integral Histogram)

  • 장동현;김향화;김태용
    • 한국HCI학회:학술대회논문집
    • /
    • 한국HCI학회 2008년도 학술대회 1부
    • /
    • pp.623-628
    • /
    • 2008
  • 본 논문에서는 비전 기반 게임 인터페이스를 위한 배경영역으로부터 전경영역을 추출하기 위해 빠르고 강건한 새로운 방법을 소개한다. Background Subtraction 방법은 추적하고자 하는 이미지의 특징을 추출하기 전에 필수적으로 거쳐야 하는 전처리 과정이다. 이를 위해 본 논문에서는 이미지를 지역 셀로 나누어 가우시안 커널이 적용된 Local Histogram을 계산하고 히스토그램의 Bhattacharyya 거리를 계산하여 전경확률을 결정한다. 이처럼 지역적 히스토그램에 기반한 방법은 급격한 조명변화나 잡음 또는 작은 배경오브젝트의 움직임에 부분적으로 강간함을 보인다. 히스토그램을 계산하는데에서 Multi-Scaled Integral Histogram을 사용하여 잡음을 억제하면서 계산의 속도를 높였다.

  • PDF

차량 감시영상에서 그림자 제거를 통한 효율적인 차종의 학습 및 분류 (Efficient Learning and Classification for Vehicle Type using Moving Cast Shadow Elimination in Vehicle Surveillance Video)

  • 신욱선;이창훈
    • 정보처리학회논문지B
    • /
    • 제15B권1호
    • /
    • pp.1-8
    • /
    • 2008
  • 일반적으로 감시영상에서 움직이는 물체들은 배경빼기 혹은 프레임 차를 이용하여 추출된다. 하지만 객체에 의해서 만들어지는 그림자는 심각한 탐지의 오류를 야기시킬 수 있다. 특히, 도로 상에 설치된 감시카메라로부터 획득된 영상으로부터 차량 정보를 분석할 때, 차량에 의해서 생성되는 그림자로 인하여 차량의 모양을 왜곡시켜 부정확한 결과를 만든다. 때문에 그림자의 제거는 감시 영상 내에서의 정확한 객체 추출을 위해서 반드시 필요하다. 본 논문은 도로감시영상 내에서 움직이는 차량의 차종판별 성능을 향상시키기 위한 움직이는 객체 내에 만들어지는 그림자를 제거한다. 제거된 객체의 영역은 소실점을 이용하여 3차원 객체로 피팅(Fitting)한 후 측정된 데이터를 감독 학습하여 원하는 차종 판별결과를 얻는데 사용한다. 실험은 3가지 기계학습 방법{IBL, C4.5, NN(Neural Network)}을 이용하여 그림자의 제거가 차종의 판별성능에 미치는 결과의 평가한다.

배경 모델 학습을 통한 객체 분할/검출 및 파티클 필터를 이용한 분할된 객체의 움직임 추적 방법 (Object Segmentation/Detection through learned Background Model and Segmented Object Tracking Method using Particle Filter)

  • 임수창;김도연
    • 한국정보통신학회논문지
    • /
    • 제20권8호
    • /
    • pp.1537-1545
    • /
    • 2016
  • 실시간영상에서 객체의 분할 및 추적은 침입자 감시와 로봇의 물체 추적, 증강현실의 객체 추적등 다양한 분야에서 사용되고 있다. 본 논문에서는 초기 입력 영상의 일부를 학습하여 배경모델로 제작한 후, 배경제거 방법을 이용하여 움직이는 객체의 분할을 통해 객체를 검출하였다. 검출된 객체의 영역을 기반으로 HSV 색상히스토그램과 파티클 필터를 이용하여 객체의 움직임을 추적하는 방법을 제안한다. 제안한 분할 방법은 평균 배경모델을 이용한 방법보다 주변환경 변화의 영향을 적게 받으며, 움직이는 객체의 검출 성능이 더욱 우수하였다. 또한 단일 객체 및 다수의 객체가 존재하는 환경에서 추적 객체가 유사한 색상 객체와 겹치는 경우, 추적 객체의 영역 절반 이상이 가려지는 경우에도 지속적으로 추적하는 결과를 얻을 수 있었다. 2개의 비디오 영상을 사용한 실험결과는 평균 중첩율 85.9%, 추적률 96.3%의 성능을 보여준다.

A Study on Improving the Adaptive Background Method for Outdoor CCTV Object Tracking System

  • Jung, Do-Wook;Choi, Hyung-Il
    • 한국컴퓨터정보학회논문지
    • /
    • 제20권7호
    • /
    • pp.17-24
    • /
    • 2015
  • In this paper, we propose a method to solve ghosting problem. To generate adaptive background, using an exponentially decreasing number of frames, may improve object detection performance. To extract moving objects from the background by using a differential image, detection error may be caused by object rotations or environmental changes. A ghosting problem can be issue-driven when there are outdoor environmental changes and moving objects. We studied that a differential image by adaptive background may reduce the ghosting problem. In experimental results, we test that our method can solve the ghosting problem.

Maritime Object Segmentation and Tracking by using Radar and Visual Camera Integration

  • Hwang, Jae-Jeong;Cho, Sang-Gyu;Lee, Jung-Sik;Park, Sang-Hyon
    • Journal of information and communication convergence engineering
    • /
    • 제8권4호
    • /
    • pp.466-471
    • /
    • 2010
  • We have proposed a method to detect and track moving ships using position from Radar and image processor. Real-time segmentation of moving regions in image sequences is a fundamental step in the radar-camera integrated system. Algorithms for segmentation of objects are implemented by composing of background subtraction, morphologic operation, connected components labeling, region growing, and minimum enclosing rectangle. Once the moving objects are detected, tracking is only performed upon pixels labeled as foreground with reduced additional computational burdens.

Detection and Recognition of Illegally Parked Vehicles Based on an Adaptive Gaussian Mixture Model and a Seed Fill Algorithm

  • Sarker, Md. Mostafa Kamal;Weihua, Cai;Song, Moon Kyou
    • Journal of information and communication convergence engineering
    • /
    • 제13권3호
    • /
    • pp.197-204
    • /
    • 2015
  • In this paper, we present an algorithm for the detection of illegally parked vehicles based on a combination of some image processing algorithms. A digital camera is fixed in the illegal parking region to capture the video frames. An adaptive Gaussian mixture model (GMM) is used for background subtraction in a complex environment to identify the regions of moving objects in our test video. Stationary objects are detected by using the pixel-level features in time sequences. A stationary vehicle is detected by using the local features of the object, and thus, information about illegally parked vehicles is successfully obtained. An automatic alarm system can be utilized according to the different regulations of different illegal parking regions. The results of this study obtained using a test video sequence of a real-time traffic scene show that the proposed method is effective.

혼잡한 환경에서 적응적 가우시안 혼합 모델을 이용한 배경의 학습 및 객체 검출 (Adaptive Gaussian Mixture Learning for High Traffic Region)

  • 박대용;김재민;조성원
    • 대한전기학회논문지:시스템및제어부문D
    • /
    • 제55권2호
    • /
    • pp.52-61
    • /
    • 2006
  • For the detection of moving objects, background subtraction methods are widely used. An adaptive Gaussian mixture model combined with probabilistic learning is one of the most popular methods for the real-time update of the complex and dynamic background. However, probabilistic learning approach does not work well in high traffic regions. In this paper, we Propose a reliable learning method of complex and dynamic backgrounds in high traffic regions.