• Title/Summary/Keyword: moving object tracking

Search Result 532, Processing Time 0.025 seconds

Opto-Digital Implementation of Convergence-Controlled Stereo Target Tracking System (주시각이 제어된 스테레오 물체추적 시스템의 광-디지털적 구현)

  • 고정환;이재수;김은수
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.27 no.4B
    • /
    • pp.353-364
    • /
    • 2002
  • In this paper, a new onto-digital stereo object-tracking system using hierarchical digital algorithms and optical BPEJTC is proposed. This proposed system can adaptively track a moving target by controlling the convergence of stereo camera. firstly, the target is detected through the background matching of the sequential input images by using optical BPEJTC and then the target area is segmented by using the target projection mask which is composed by hierarchical digital processing of image subtraction, logical operation and morphological filtering. Secondly, the location's coordinate of the moving target object for each of the sequential input frames can be extracted through carrying out optical BPEJTC between the reference image of the target region mask and the stereo input image. Finally, the convergence and pan/tilt of stereo camera can be sequentially controlled by using these target coordinate values and the target can be kept in tracking. Also, a possibility of real-time implementation of the adaptive stereo object tracking system is suggested through optically implementing the proposed target extraction and convergence control algorithms.

Tracking a Selected Target among Multiple Moving Objects (다수의 물체가 이동하는 환경에서 선택된 물체의 추적기법)

  • 김준석;송필재;차형태;홍민철;한헌수
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2000.10a
    • /
    • pp.363-363
    • /
    • 2000
  • The conventional algorithms which identify and follow a moving target using a camera located at a fixed position are not appropriate for applying to the cases o( using mobile robots, due to their long processing time. This paper proposes a new tracking algorithm based on the sensing system which uses a line light with a single camera. The algorithm categirizes the motion patterns of a pair of mobile objects into parallel, branching, and merging motion, to decide of which objects the trajectories should be calculated to follow the reference object. Kalman Filter is used to estimate the trajectories of selected objects. The proposed algorithm has shown in the experiments that the mobile robot does not miss the target in most cases.

  • PDF

Construction of moving object tracking framework with fuzzy clustering, prediction and Hausdorff distance (퍼지 군집, 예측과 하우스돌프 거리를 이용한 이동물체 추적 프레임워크 구축)

  • 소영성
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.8 no.2
    • /
    • pp.128-133
    • /
    • 1998
  • In this paper, we present a parallel framework for tracking moving objects. Parallel framework consists largely of two parts:Search Space Reduction(SSR) and Tracking(TR). SSR is further composed of fuzzy clustering and prediction based on Kalman filter. TR is done by boundarymatching using the Hausdorff distance based on distance transform.

  • PDF

Multiple Moving Objects Detection and Tracking Algorithm for Intelligent Surveillance System (지능형 보안 시스템을 위한 다중 물체 탐지 및 추적 알고리즘)

  • Shi, Lan Yan;Joo, Young Hoon
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.22 no.6
    • /
    • pp.741-747
    • /
    • 2012
  • In this paper, we propose a fast and robust framework for detecting and tracking multiple targets. The proposed system includes two modules: object detection module and object tracking module. In the detection module, we preprocess the input images frame by frame, such as gray and binarization. Next after extracting the foreground object from the input images, morphology technology is used to reduce noises in foreground images. We also use a block-based histogram analysis method to distinguish human and other objects. In the tracking module, color-based tracking algorithm and Kalman filter are used. After converting the RGB images into HSV images, the color-based tracking algorithm to track the multiple targets is used. Also, Kalman filter is proposed to track the object and to judge the occlusion of different objects. Finally, we show the effectiveness and the applicability of the proposed method through experiments.

Multiple Vehicle Tracking Algorithm Using Kalman Filter (칼만 필터를 이용한 다중 차량 추적 알고리즘)

  • 김형태;설성욱
    • Proceedings of the IEEK Conference
    • /
    • 1998.10a
    • /
    • pp.955-958
    • /
    • 1998
  • This paper describes the algorithm which extracts moving vehicles from sequential images and tracks those vehicles using Kalman filter. This work is composed of a motion segmentation stage which extracts moving objects from sequential images and gets features of objects, and a motion estimation stage which estimates the position and the motion of moving objects using Kalman filter. In the motion estimation stage, applying to affine motion model we divided the Kalman filter into position filter and velocity filter to employ linear Kalman filter. Multi-target tracking requires a data association component that decides which measurement to use for updating the state of which object. We use pattern recognition method to solve this problem.

  • PDF

Maritime Object Segmentation and Tracking by using Radar and Visual Camera Integration

  • Hwang, Jae-Jeong;Cho, Sang-Gyu;Lee, Jung-Sik;Park, Sang-Hyon
    • Journal of information and communication convergence engineering
    • /
    • v.8 no.4
    • /
    • pp.466-471
    • /
    • 2010
  • We have proposed a method to detect and track moving ships using position from Radar and image processor. Real-time segmentation of moving regions in image sequences is a fundamental step in the radar-camera integrated system. Algorithms for segmentation of objects are implemented by composing of background subtraction, morphologic operation, connected components labeling, region growing, and minimum enclosing rectangle. Once the moving objects are detected, tracking is only performed upon pixels labeled as foreground with reduced additional computational burdens.

Object Tracking Using Particle Filters in Moving Camera (움직임 카메라 환경에서 파티클 필터를 이용한 객체 추적)

  • Ko, Byoung-Chul;Nam, Jae-Yeal;Kwak, Joon-Young
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.37 no.5A
    • /
    • pp.375-387
    • /
    • 2012
  • This paper proposes a new real-time object tracking algorithm using particle filters with color and texture features in moving CCD camera images. If the user selects an initial object, this region is declared as a target particle and an initial state is modeled. Then, N particles are generated based on random distribution and CS-LBP (Centre Symmetric Local Binary Patterns) for texture model and weighted color distribution is modeled from each particle. For observation likelihoods estimation, Bhattacharyya distance between particles and their feature models are calculated and this observation likelihoods are used for weights of individual particles. After weights estimation, a new particle which has the maximum weight is selected and new particles are re-sampled using the maximum particle. For performance comparison, we tested a few combinations of features and particle filters. The proposed algorithm showed best object tracking performance when we used color and texture model simultaneously for likelihood estimation.

Traffic Accident Detection Based on Ego Motion and Object Tracking

  • Kim, Da-Seul;Son, Hyeon-Cheol;Si, Jong-Wook;Kim, Sung-Young
    • Journal of Advanced Information Technology and Convergence
    • /
    • v.10 no.1
    • /
    • pp.15-23
    • /
    • 2020
  • In this paper, we propose a new method to detect traffic accidents in video from vehicle-mounted cameras (vehicle black box). We use the distance between vehicles to determine whether an accident has occurred. To calculate the position of each vehicle, we use object detection and tracking method. By the way, in a crowded road environment, it is so difficult to decide an accident has occurred because of parked vehicles at the edge of the road. It is not easy to discriminate against accidents from non-accidents because a moving vehicle and a stopped vehicle are mixed on a regular downtown road. In this paper, we try to increase the accuracy of the vehicle accident detection by using not only the motion of the surrounding vehicle but also ego-motion as the input of the Recurrent Neural Network (RNN). We improved the accuracy of accident detection compared to the previous method.

A Study on Moving Object Recognition and Tracking in Unmanned Aerial Camera (공중 무인감시 카메라의 이동물체 인식 및 추적에 관한 연구)

  • Park, Jong-Oh;Kim, Young-Min;Lee, Jong-Keuk
    • Journal of Korea Multimedia Society
    • /
    • v.13 no.5
    • /
    • pp.684-690
    • /
    • 2010
  • Digitalized Image Information is variously used like to substitute or help human's visual ability. Unmanned observation Camera is useful for the preventing disaster, risk factor and object observation but it is mostly to depend on awareness for human's vision. The purpose of this paper is to show that Unmanned Aerial Camera carries out object recognition and autonomous position tracking. when the informations about a specific object are given. For this purpose, we have to solve complicated problems like change according to object movement and variation of color and brightness information with refraction, interference and scattering of light and noise from environmental factors like weather. But, as the first step we limit the scope of this study with simplified environment in this paper. Our goal is the study and experience about object recognition and tracking via simplified environment with unmanned aerial camera. We obtained successful results of this study and experiment.

Active Object Tracking based on stepwise application of Region and Color Information (지역정보와 색 정보의 단계적 적용에 의한 능동 객체 추적)

  • Jeong, Joon-Yong;Lee, Kyu-Won
    • The KIPS Transactions:PartB
    • /
    • v.19B no.2
    • /
    • pp.107-112
    • /
    • 2012
  • An active object tracking algorithm using Pan and Tilt camera based in the stepwise application of region and color information from realtime image sequences is proposed. To reduce environment noises in input sequences, Gaussian filtering is performed first. An image is divided into background and objects by using the adaptive Gaussian mixture model. Once the target object is detected, an initial search window close to an object region is set up and color information is extracted from the region. We track moving objects in realtime by using the CAMShift algorithm which enables to trace objects in active camera with the color information. The proper tracking is accomplished by controlling the amount of pan and tilt to be placed the center position of object into the middle of field of view. The experimental results show that the proposed method is more effective than the hand-operated window method.