Proceedings of the Korean Institute of Information and Commucation Sciences Conference
/
2012.10a
/
pp.894-897
/
2012
We propose a effective method using the HOG (Histogram of Oriented Gradients) feature vector to track individual objects in an environment which multiple objects are moving. The proposed algorithm consists of pre-processing, object detection and object tracking. We experimented with six videos which have various trajectories and the movement. When occlusion between objects was occurred, we identified individual object by using center and predicted coordinates of moving objects. The algorithm shows 85.45% of tracking rate in the videos we experimented. We expect the proposed system is utilized in security systems which require the alalysis of the position and motion pattern of objects.
The Journal of Korea Institute of Information, Electronics, and Communication Technology
/
v.8
no.4
/
pp.249-256
/
2015
Shadow is a common physical phenomenon in natural images and may cause problems in computer vision tasks. Therefore, shadow removal is an essential preprocessing process for effective moving object tracking in video image. In this paper, we proposed the method of shadow removal algorithm using chromaticity, brightness distortion and direction of shadow candidate. The proposed method consists of two steps. First, removal process of primary shadow candidate region by using chromaticity, brightness and distortion. The second stage applies the final shadow candidate region to obtain a direction feature of shadow which is estimated by the thinning algorithm after calculating the lowest pixel position of the moving object. To verify the proposed approach, some experiments are conducted to draw a compare between conventional method and that of proposed. Experimental results showed that proposed methodology is simple, but robust and well adaptive to be need to remove a shadow removal operation.
Kim, Sangdae;Kim, Cheonyong;Cho, Hyunchong;Yim, Yongbin;Kim, Sang-Ha
The Journal of Korean Institute of Communications and Information Sciences
/
v.39B
no.5
/
pp.271-280
/
2014
In wireless sensor networks, there have been two methods for sensing continuously moving object tracking: user-query based method and periodic report based method. Although the former method requires overhead for user query rather than the latter method, the former one is known as an energy-efficient method without transferring unnecessary information. In the former method, a virtual tree, consisting of sensor nodes, is exploited for the user querying and sensor reporting. The tree stores the information about mobile objects; the stored information is triggered to report by the user query. However, in case of fast moving object, the tracking accuracy reduces due to the time delay of end-to-end repeated query. To solve the problem, we propose a query relaying method reducing the time delay for mobile object tracking. In the proposed method, the nodes in the tree relay the query to the adjacent node according to the movement of mobile object tracking. Relaying the query message reduces the end-to-end querying time delay. Simulation results show that our method is superior to the existing ones in terms of tracking accuracy.
Journal of the Korea Institute of Information and Communication Engineering
/
v.3
no.2
/
pp.389-396
/
1999
In this paper, we propose a multiple underwater object classification and tracking algorithm using the narrowband tonal and frequency line features extracted from the frequency spectrum of the acoustic signal. The general algorithm using the wideband and narrowband energy has a high tracking error when objects are close and cross each other. But the proposed algorithm shows a good tracking performance for the simulation scenarios generated by the real acoustic data.
We propose a new visual tracking system for grasping which can find grasping points of an unknown polygonal object. We construct the system with the image prediction technique and Extended Kalman Filter algorithm. The Extended Kalman Filter(EKF) based on the SVD can improve the accuracy and processing time for the estimation of the nonlinear state variables. By using it, we can solve the numerical unstability problem that can occur in the visual tracking system based on Kalman filter. The image prediction algorithm can reduce the effect of noise and the image processing time. In the processing of a visual tracking, we can construct the parameterized family and can found the grasping points of unknown object through the geometric properties of the parameterized family.
One of the difficult works in an autonomous driving system is detecting road lanes or objects in the road boundaries. Detecting and tracking a vehicle is able to play an important role on providing important information in the framework of advanced driver assistance systems such as identifying road traffic conditions and crime situations. This paper proposes a vehicle detection scheme based on deep learning to classify and tracking vehicles in a complex and diverse environment. We use the modified YOLO as the object detector and polynomial regression as object tracker in the driving video. With the experimental results, using YOLO model as deep learning model, it is possible to quickly and accurately perform robust vehicle tracking in various environments, compared to the traditional method.
Kim, Sangdae;Kim, Cheonyong;Cho, Hyunchong;Yim, Yongbin;Kim, Sang-Ha
KIISE Transactions on Computing Practices
/
v.20
no.11
/
pp.598-603
/
2014
In wireless sensor networks, two methods have been generally used to track continuously moving object: a user query-based method and a periodic report-based method. Although the former method generates more overhead as a result of the user queries, the former one is also an energy-efficient method that does not transfer unnecessary information. For the user query-based method, a virtual tree that consist of sensor nodes is used to perform the user query and the sensor reporting. The tree stores the information of the mobile objects, and the stored information triggers a report b the user query. However, in case of a fast-moving object, the tracking accuracy decreases as a result of the time delay of the end-to-end repeated query. In order to solve this problem, we propose a query-relay method that reduces the time delay for mobile object tracking. In the proposed method, the nodes in the tree relay the query to adjacent nodes according to the movement of mobile object that is tracked. When the query messages are relayed. The end-to-end querying time delay is reduced. and a simulation shows that our method is superior to existing ones in terms of tracking accuracy.
The Journal of the Korea institute of electronic communication sciences
/
v.9
no.2
/
pp.143-148
/
2014
Particle filter algorithm has been proven very successful for non-linear and non-Gaussian estimation problem and thus it has been widely used for object tracking for video signals. If the object moves significantly, particle filter needs very large number of particles to track object and this results high computational cost. In this paper, modified particle filter by adopting motion vector is proposed for tracking vehicle in low frame rate(LPR) video input, which the object moving significantly and randomly between consecutive frames. In the proposed algorithm, motion vector is applied in selection and observe step. The experimental result shows that the proposed particle filter can track vehicle successfully in the case when previous one fails. And it also shows the propose method increases the precision of tracking.
This paper proposes a method to trace and interpret a moving object based on the information which can be directly obtained from MPEG-2 compressed video stream without decoding process. In the proposed method, the motion flow is constructed from the motion vectors included in compressed video. We calculate the amount of pan, tilt, and zoom associated with camera operations using generalized Hough transform. The local object motion can be extracted from the motion flow after the compensation with the parameters related to the global camera motion. Initially, a moving object to be traced is designated by user via bounding box. After then automatic tracking Is performed based on the accumulated motion flows according to the area contributions. Also, in order to reduce the cumulative tracking error, the object area is reshaped in the first I-frame of a GOP by matching the DCT coefficients. The proposed method can improve the computation speed because the information can be directly obtained from the MPEG-2 compressed video, but the object boundary is limited by macro-blocks rather than pixels. Also, the proposed method is proper for approximate object tracking rather than accurate tracing of an object because of limited information available in the compressed video data.
Journal of Institute of Control, Robotics and Systems
/
v.21
no.7
/
pp.641-647
/
2015
This paper proposes a new strategy for a quad-rotor to track a moving object efficiently by using image processing and an extended Kalman filter. The goal of path planning for the quad-rotor is to design an optimal path from the start point to the destination point. To lengthen the freight time of the quad-rotor, an optimal path is required to reduce the energy consumption. To track a moving object, the mark signed on the moving object has been detected by a camera mounted first on the quad-rotor. The center coordinates of the mark and its area are calculated through the blob analysis which is one type of image processing. The mark coordinates are utilized to obtain information on the motion direction and the area of the mark is utilized to recognize whether the object moves backward or forward from the camera on the quad-rotor. In addition, an extended Kalman filter has been applied to predict the direction and speed of the dynamically moving object. Through these schemes, it is aimed that the quad-rotor can track the dynamic object efficiently in terms of flight distance and time. Through the two different route freights of the quad-rotor, the performance of the proposed system has been demonstrated.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.