• Title/Summary/Keyword: moving object tracking

Search Result 530, Processing Time 0.026 seconds

Model-Based Moving Object Tracking Algorithm (모델 기반 이동 물체 추적 알고리즘)

  • Kim, Tae-Sik;Kim, Yoon-Ho;Lee, Myong-Kil;Chun, Quan;Lee, Ju-Shin
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2000.05a
    • /
    • pp.356-359
    • /
    • 2000
  • In this paper, we propose a model based moving object tracking algorithm in dynamic scene. To adapt the shape change of the moving object, the Hausdorff distance is applied as the measurement of similarity between model and image. To reduce the processing time, 2-D logarithmic search method is applied for locate the position of moving object. Experiments on a running motorcycle, the result showed that the mean square error of real position and tracking result is 1.845 and consequently, matching process is relatively simple and reduced.

  • PDF

OnBoard Vision Based Object Tracking Control Stabilization Using PID Controller

  • Mariappan, Vinayagam;Lee, Minwoo;Cho, Juphil;Cha, Jaesang
    • International Journal of Advanced Culture Technology
    • /
    • v.4 no.4
    • /
    • pp.81-86
    • /
    • 2016
  • In this paper, we propose a simple and effective vision-based tracking controller design for autonomous object tracking using multicopter. The multicopter based automatic tracking system usually unstable when the object moved so the tracking process can't define the object position location exactly that means when the object moves, the system can't track object suddenly along to the direction of objects movement. The system will always looking for the object from the first point or its home position. In this paper, PID control used to improve the stability of tracking system, so that the result object tracking became more stable than before, it can be seen from error of tracking. A computer vision and control strategy is applied to detect a diverse set of moving objects on Raspberry Pi based platform and Software defined PID controller design to control Yaw, Throttle, Pitch of the multicopter in real time. Finally based series of experiment results and concluded that the PID control make the tracking system become more stable in real time.

Moving Object Segmentation Using Object Area Tracking Algorithm (움직임 영역 추출 알고리즘을 이용한 자동 움직임 물체 분할)

  • Lee Kwang-Ho;Lee Seung-Ik
    • Journal of Korea Multimedia Society
    • /
    • v.7 no.9
    • /
    • pp.1240-1245
    • /
    • 2004
  • This paper presents the moving objects segmentation algorithms from the sequence images in the stationary backgrounds such as surveillance camera and video phone and so on. In this paper, the moving object area is extracted with proposed object searching algorithm and then moving object is segmented within the moving object area. Also the proposed algorithms have the robustness against noise problems and results show the proposed algorithm is able to efficiently segment and track the moving object area.

  • PDF

Tracking Moving Object using Hierarchical Search Method (계층적 탐색기법을 이용한 이동물체 추적)

  • 방만식;김태식;김영일
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.7 no.3
    • /
    • pp.568-576
    • /
    • 2003
  • This paper proposes a moving object tracking algorithm by using hierarchical search method in dynamic scenes. Proposed algorithm is based on two main steps: generation step of initial model from different pictures, and tracking step of moving object under the time-yawing scenes. With a series of this procedure, tracking process is not only stable under far distance circumstance with respect to the previous frame but also reliable under shape variation from the 3-dimensional(3D) motion and camera sway, and consequently, by correcting position of moving object, tracking time is relatively reduced. Partial Hausdorff distance is also utilized as an estimation function to determine the similarity between model and moving object. In order to testify the performance of proposed method, the extraction and tracking performance have tested using some kinds of moving car in dynamic scenes. Experimental results showed that the proposed algorithm provides higher performance. Namely, matching order is 28.21 times on average, and considering the processing time per frame, it is 53.21ms/frame. Computation result between the tracking position and that of currently real with respect to the root-mean-square(rms) is 1.148. In the occasion of different vehicle in terms of size, color and shape, tracking performance is 98.66%. In such case as background-dependence due to the analogy to road is 95.33%, and total average is 97%.

Segmentation and Tracking Algorithm for Moving Speaker in the Video Conference Image (화상회의 영상에서 움직이는 화자의 분할 및 추적 알고리즘)

  • Choi Woo-Young;Kim Han-Me
    • Journal of IKEEE
    • /
    • v.6 no.1 s.10
    • /
    • pp.54-64
    • /
    • 2002
  • In this paper, we propose the algorithm for segmenting the moving speaker and tracking its movement in the video conference image. For real time processing, we simplify the algorithm which is processed in the order of the segmenting and the tracking step. In the segmenting step, the speaker object is segmented from the image by using both the motion information obtained from the difference method and the illuminance information of image. The reference mask image is created from segmented speaker object. In the tracking step, the moving speaker is tracked by using simple block matching algorithm of which computation time is reduced by discarding the blocks which are classified into the unuseful blocks. In the simulation, we can get the good result of segmenting and tracking the moving speaker by applying the proposed algorithm to several test images.

  • PDF

Real-Time Tracking for Moving Object using Neural Networks (신경망을 이용한 이동성 칼라 물체의 실시간 추적)

  • Choi, Dong-Sun;Lee, Min-Jung;Choi, Young-Kiu
    • Proceedings of the KIEE Conference
    • /
    • 2001.07d
    • /
    • pp.2358-2361
    • /
    • 2001
  • In recent years there have been increasing interests in real-time object tracking with image information. Since image information is affected by illumination, this paper presents the real-time object tracking method based on neural networks which have robust characteristics under various illuminations. This paper proposes three steps to track the object and the fast tracking method. In the first step the object color is extracted using neural networks. In the second step we detect the object feature information based on invariant moment. Finally the object is tracked through a shape recognition using neural networks. To achieve the fast tracking performance, this paper first has a global search of entire image and tracks the object through local search when the object is recognized.

  • PDF

Graph-based Moving Object Detection and Tracking in an H.264/SVC bitstream domain for Video Surveillance (감시 비디오를 위한 H.264/SVC 비트스트림 영역에서의 그래프 기반 움직임 객체 검출 및 추적)

  • Sabirin, Houari;Kim, Munchurl
    • Proceedings of the Korean Society of Broadcast Engineers Conference
    • /
    • 2012.07a
    • /
    • pp.298-301
    • /
    • 2012
  • This paper presents a graph-based method of detecting and tracking moving objects in H.264/SVC bitstreams for video surveillance applications that makes use the information from spatial base and enhancement layers of the bitstreams. In the base layer, segmentation of real moving objects are first performed using a spatio-temporal graph by removing false detected objects via graph pruning and graph projection, followed by graph matching to precisely identify the real moving objects over time even under occlusion. For the accurate detection and reliable tracking of moving objects in the enhancement layer, as well as saving computational complexity, the identified block groups of the real moving objects in the base layer are then mapped to the enhancement layer to provide accurate and efficient object detection and tracking in the bitstreams of higher resolution. Experimental results show the proposed method can produce reliable results with low computational complexity in both spatial layers of H.264/SVC test bitstreams.

  • PDF

Contour and Feature Parameter Extraction for Moving Object Tracking in Traffic Scenes (도로영상에서 움직이는 물체 추적을 위한 윤곽선 및 특징 파라미터 추출)

  • Lee, Chul-Hun;Seol Sung-Wook;Joo Jae-Heum;Nam Ki-Gon
    • Journal of the Institute of Electronics Engineers of Korea CI
    • /
    • v.37 no.1
    • /
    • pp.11-20
    • /
    • 2000
  • This paper presents the method of extracting the contour and shape parameters for moving object tracking in traffic scenes. The contour is extracted by applying difference image method in reduction image and the features are extracted from original image to grow the accuracy of tracking. We used features such as circle distribution, center moment, and maximum and minimum ratio. Data association problem is solved by these features. Kalman filters are used for moving object tracking on real time. The simulation results indicate that the proposed algorithm appears to generate feature vectors good enough for multiple vehicle tracking.

  • PDF

An Automatic Camera Tracking System for Video Surveillance

  • Lee, Sang-Hwa;Sharma, Siddharth;Lin, Sang-Lin;Park, Jong-Il
    • Proceedings of the Korean Society of Broadcast Engineers Conference
    • /
    • 2010.07a
    • /
    • pp.42-45
    • /
    • 2010
  • This paper proposes an intelligent video surveillance system for human object tracking. The proposed system integrates the object extraction, human object recognition, face detection, and camera control. First, the object in the video signals is extracted using the background subtraction. Then, the object region is examined whether it is human or not. For this recognition, the region-based shape descriptor, angular radial transform (ART) in MPEG-7, is used to learn and train the shapes of human bodies. When it is decided that the object is human or something to be investigated, the face region is detected. Finally, the face or object region is tracked in the video, and the pan/tilt/zoom (PTZ) controllable camera tracks the moving object with the motion information of the object. This paper performs the simulation with the real CCTV cameras and their communication protocol. According to the experiments, the proposed system is able to track the moving object(human) automatically not only in the image domain but also in the real 3-D space. The proposed system reduces the human supervisors and improves the surveillance efficiency with the computer vision techniques.

  • PDF

Person-following of a Mobile Robot using a Complementary Tracker with a Camera-laser Scanner (카메라-레이저스캐너 상호보완 추적기를 이용한 이동 로봇의 사람 추종)

  • Kim, Hyoung-Rae;Cui, Xue-Nan;Lee, Jae-Hong;Lee, Seung-Jun;Kim, Hakil
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.20 no.1
    • /
    • pp.78-86
    • /
    • 2014
  • This paper proposes a method of tracking an object for a person-following mobile robot by combining a monocular camera and a laser scanner, where each sensor can supplement the weaknesses of the other sensor. For human-robot interaction, a mobile robot needs to maintain a distance between a moving person and itself. Maintaining distance consists of two parts: object tracking and person-following. Object tracking consists of particle filtering and online learning using shape features which are extracted from an image. A monocular camera easily fails to track a person due to a narrow field-of-view and influence of illumination changes, and has therefore been used together with a laser scanner. After constructing the geometric relation between the differently oriented sensors, the proposed method demonstrates its robustness in tracking and following a person with a success rate of 94.7% in indoor environments with varying lighting conditions and even when a moving object is located between the robot and the person.