• Title/Summary/Keyword: moving mesh

Search Result 242, Processing Time 0.034 seconds

Overview of MPEG Dynamic Mesh Coding (DMC) for Volumetric Video (볼류메트릭 비디오를 위한 MPEG Dynamic Mesh Coding (DMC) 표준화 동향)

  • Choi, YiHyun;Jeong, Jong-Beom;Lee, Soonbin;Ryu, Eun-Seok
    • Proceedings of the Korean Society of Broadcast Engineers Conference
    • /
    • 2022.06a
    • /
    • pp.261-264
    • /
    • 2022
  • MPEG 에서는 frame-based animated mesh compression(FAMC)와 같은 동적 메쉬를 압축하는 기준을 만들어왔다. 그러나 이러한 동적 메쉬 압축 표준은 시변 연결성(time-varying) 정보가 아닌 일정한 연결성 정보를 가진 메쉬를 기준으로 개발되었기 때문에 실시간 스트리밍에서 사용하기 부적합하다. 따라서, moving picture experts group(MPEG)에서는 시변 연결성 정보를 사용하는 동적 메쉬 압축에 대한 새로운 표준을 제안하였는데, 본 논문에서는 MPEG 이 제의한 call for proposals (CfP)에 대해 여러 기관들이 제안한 메쉬 압축 기술들을 소개한다.

  • PDF

A New Remeshing Technique of Tetrahedral Elements by Redistribution of Nodes in Subdomains and its Application to the Finite Element Analysis (영역별 절점 재분포를 통한 사면체 격자 재구성 방법 및 유한요소해석에의 적용)

  • Hong J.T.;Lee S.R.;Yang D.Y.
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2005.06a
    • /
    • pp.607-610
    • /
    • 2005
  • A remeshing algorithm using tetrahedral elements has been developed, which is adapted to the mesh density map constructed by a posteriori error estimation. In the finite element analyses of metal forging processes, numerical error increases as deformation proceeds due to severe distortion of elements. In order to reduce the numerical error, the desired mesh sizes in each region of the workpiece are calculated by a posteriori error estimation and the density map is constructed. Piecewise density functions are then constructed with the radial basis function in order to interpolate the discrete data of the density map. The sample mesh is constructed based on the point insertion technique which is adapted to the density function and the mesh size is controlled by moving and deleting nodes to obtain optimal distribution according to the mesh density function and the quality optimization function as well. After finishing the redistribution process of nodes, a tetrahedral mesh is constructed with the redistributed nodes, which is adapted to the density map and resulting in good mesh quality. A goodness and adaptability of the constructed mesh is verified with a testing measure. The proposed remeshing technique is applied to the finite element analyses of forging processes.

  • PDF

An Effective Location-based Packet Scheduling Scheme for Adaptive Tactical Wireless Mesh Network (무선 메쉬 네트워크의 군 환경 적용을 위한 효율적인 위치기반 패킷 스케줄링 방식)

  • Kim, Young-An;Hong, Choong-Seon
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.32 no.12B
    • /
    • pp.719-727
    • /
    • 2007
  • The Wireless Mesh Network technology is able to provide an infrastructure for isolated islands, in which it is difficult to install cables or wide area such as battlefield of armed forces. Therefore, Wireless Mesh Network is frequently used to satisfy needs for internet connection and active studies and research on them are in progress However, as a result of increase in number of hops under hop-by-hop communication environment has caused a significant decrease in throughput and an increase in delay. Considering the heavy traffic of real-time data, such as voice or moving pictures to adaptive WMN, in a military environment, it is restricted for remote units to have their Mesh Node to get real-time services. Such phenomenon might cause an issue in fairness. In order to resolve this issue, the Location-based Packet Scheduling Scheme, which can provide an fair QoS to each mesh node that is connected to each echelon's AP and operates based on WRR method that gives a priority to emergency message and control packet. The performance of this scheme is validated.

Numerical Simulation of Airframe Separation of a Missile System Using an Unstructured Overset Mesh Technique (비정렬 중첩격자기법을 이용한 유도무기의 기체분리운동 모사)

  • Jeong, Mun-Seung;Lee, Sang-Uk;Gwon, O-Jun;Heo, Gi-Hun;Byeon, U-Sik
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.34 no.5
    • /
    • pp.19-29
    • /
    • 2006
  • In this study, numerical simulation of airframes separating from a missile system has been preformed. For the time-accurate trajectory simulation, six D.O.F equations of motion of multiply connected bodies were derived and these equations have been coupled with the unstructured overset mesh technique for the treatment of independent mesh blocks moving with each body component. Applications were made for the simulation of the airframe separation at missile angles of attack of 0 and 5 degrees. It was demonstrated that the present method is efficient and robust for the prediction of unsteady time-accurate flow fields involving multiple bodies in relative motion.

Impact Characteristics of Subsea Pipeline Considering Seabed Properties and Burial Depth (해저지반 성질과 매설깊이 변화에 따른 해저파이프의 충돌 특성)

  • Shin, Mun-Beom;Seo, Young-kyo
    • Journal of Ocean Engineering and Technology
    • /
    • v.31 no.3
    • /
    • pp.219-226
    • /
    • 2017
  • In this study, the impact characteristics of subsea pipelines that were installed in various soil types and burial depths were evaluated by a numerical method. An impact scenario replicated a dropped ship anchor that fell vertically and impacted an installed subsea pipeline. In order to calculate the impact force through terminal velocity, FLUENT, a computational fluid dynamic program and MDM (Moving Deforming Mesh) technique were applied. Next, a dynamic finite element program, ANSYS Explicit Dynamics, was used for impact analysis between the anchor and pipeline (or, subsea if they were buried). Three soil types were considered: loose sand, dense sand and soft clay by applying the Mohr-coulomb model to the seabed. The buried depth was assumed to be 0 m, 1 m and 2 m. In conclusion, a subsea pipeline was the most stable when buried in dense sand at a depth of 2 m to prevent impact damage.

Computation of Viscous Flows around a Two-dimensional Oscillating Airfoil ( Part 1. without Dynamic Stall ) (진동하는 2차원 날개 단면 주위에 대한 점성 유동장 계산( Part 1. 동적실속이 없는 경우 ))

  • Lee, Pyoung-Kuk;Kim, Hyoung-Tae
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.44 no.1 s.151
    • /
    • pp.8-15
    • /
    • 2007
  • In this paper, numerical calculations are performed to analyze the unsteady flow of NACA airfoil sections. In order to ease the flow computation for the fluid region changing in time, improve the quality of solution and simplify the grid generation for the oscillating foil flow, the computational method adopts a moving and deforming mesh with the multi-block grid topology. The multi-block, structured-unstructured hybrid grid is generated using the commercial meshing software Gridgen V15. The MDM (Moving & Deforming Mesh) and the UDF (User Define function) function of FLUENT 6 are adopted for computing turbulent flows of the foil in pitching motion. Computed unsteady lift and drag forces are compared with experimental data. in general, the characteristics of unsteady lift and drag of the experiments are reproduced well in the numerical analysis.

Numerical Analysis on Flow Characteristics of a Vane Pump (Vane Pump의 유동 특성에 대한 수치 해석)

  • Lee, Sang-Hyuk;Jin, Bong-Yong;Hur, Nahm-Keon
    • The KSFM Journal of Fluid Machinery
    • /
    • v.10 no.1 s.40
    • /
    • pp.34-40
    • /
    • 2007
  • In this study, the characteristic of a vane pump of automotive power steering system is numerically analyzed. The vane pump changes the energy level of operation fluid by converting mechanical input power to hydraulic output. To simulate this mechanism, moving mesh technique is adopted. As a result, the flow rate and pressure are obtained by numerical analysis. The flow rate agrees well with the experimental data. Moreover, the variation and oscillation of the pressure around the rotating vane are observed. As a result of flow characteristics, The difference of pressure between both side of vane tip causes the back flow into the rotor. As the rotational velocity increases, the flow rate at the outlet and the pressure in the vane tip rises with higher amplitude of oscillation. In order to reducing the oscillation, the design of devices for decreasing the cross-area of the outlet part and returning the flow from the outlet to the inlet is required.

Calculation of Anchor's Terminal Velocity in the Water and Onshore Dropped Heights Using MDM Technique

  • Shin, Mun-Beom;Seo, Young-Kyo
    • Journal of Advanced Research in Ocean Engineering
    • /
    • v.3 no.2
    • /
    • pp.59-65
    • /
    • 2017
  • When an anchor is dropped into the sea, there exists a danger of collision on the pipeline and subsea cables in the seabed. This collision could cause huge environmental disasters and serious economic losses. In order to secure the safety of subsea structures such as pipelines and subsea cables from the external impact, it is necessary to estimate the exact external force through the anchor's terminal velocity on the water. FLUENT, a computational fluid dynamic program, was used to acquire the terminal velocity and drag coefficient computation. A half-symmetry condition was used in order to reduce the computational time and a moving deforming mesh technique also adapted to present hydrostatic pressure. The results were examined with the equation based on Newton's Second Law to check the error rate. In this study, three example cases were calculated by stockless anchors of 5.25 ton, 10.5 ton, and 15.4 ton, and for the onshore experiment dropped height was back calculated with the anchor's terminal velocity in the water.

Numerical Study on the Radiation of Intake Noise from Internal Combustion Engine by Using Essentially Non-Oscillatory Schemes (ENO기법을 이용한 연소 엔진 흡기계 소음의 방사에 관한 수치적 연구)

  • 김용석;이덕주
    • Journal of KSNVE
    • /
    • v.8 no.2
    • /
    • pp.239-250
    • /
    • 1998
  • Traditionally, intake noise from internal combustion engine has not recevied much attention compared to exhaust noise. But nowadays, intake noise is a major contributing factor to automotive passenger compartment noise levels. The main objective of this paper is to identify the mechanism of generation, propagation and radiation of the intake noise. With a simplest geometric model, one of the main noise sources for the intake stroke is found to be the pressure surge, which is generated after intake valve closing. The pressure surge, which has the nonlinear acoustic behavior, propagates and radiates with relatively large amplitude. In this paper, unsteady compressible Navier-Stokes equations are employed for the intake stroke of axisymmetric model having a single moving cylinder and a single moving intake valve. To simulate the periodic motion of the piston and the valve, unsteady deforming mesh algorithm is employed and Thompson's non-reflecting boundary condition is applied to the radiation field. In order to resolve the small amplitude waves at the radiation field, essentially non-oscillatory(ENO) schemes with an artificial compression method (ACM) are used.

  • PDF

Numerical Study on Dynamic Characteristics of Pintle Nozzle for Variant Thrust (가변 추력용 핀틀 노즐의 동적 특성에 관한 수치적 연구)

  • Park, Hyung-Ju;Kim, Li-Na;Heo, Jun-Young;Sung, Hong-Gye;Yang, June-Seo
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2011.11a
    • /
    • pp.213-217
    • /
    • 2011
  • Unsteady numerical simulations of pintle nozzles were implemented for solid rocket thrust vector control. The variation of pintle location was considered using unsteady numerical techniques, and dynamic characteristics of various pintle models were investigated. In order to consider the variation of the pintle location, a moving mesh method was applied. The effects of shape and location of the pintle nozzle have been analytically investigated. And the results were compared with numerical results. The chamber pressure, mass flow and thrust are analyzed to take account dynamic characteristics of pintle performance.

  • PDF