• 제목/요약/키워드: moving load

검색결과 697건 처리시간 0.029초

A Hybrid Correction Technique of Missing Load Data Based on Time Series Analysis

  • Lee, Chan-Joo;Park, Jong-Bae;Lee, Jae-Yong;Shin, Joong-Rin;Lee, Chang-Ho
    • KIEE International Transactions on Power Engineering
    • /
    • 제4A권4호
    • /
    • pp.254-261
    • /
    • 2004
  • Traditionally, electrical power systems had formed the vertically integrated industry structures based on the economics of scale. However, power systems have been recently reformed to increase their energy efficiency. According to these trends, the Korean power industry underwent partial reorganization and competition in the generation market was initiated in 2001. In competitive electric markets, accurate load data is one of the most important issues to maintaining flexibility in the electric markets as well as reliability in the power systems. In practice, the measuring load data can be uncertain because of mechanical trouble, communication jamming, and other issues. To obtain reliable load data, an efficient evaluation technique to adjust the missing load data is required. This paper analyzes the load pattern of historical real data and then the tuned ARIMA (Autoregressive Integrated Moving Average), PCHIP (Piecewise Cubic Interpolation) and Branch & Bound method are applied to seek the missing parameters. The proposed method is tested under a variety of conditions and also tested against historical measured data from the Korea Energy Management Corporation (KEMCO).

Investigation of dynamic response of "bridge girder-telpher-load" crane system due to telpher motion

  • Maximov, Jordan T.;Dunchev, Vladimir P.
    • Coupled systems mechanics
    • /
    • 제7권4호
    • /
    • pp.485-507
    • /
    • 2018
  • The moving load causes the occurrence of vibrations in civil engineering structures such as bridges, railway lines, bridge cranes and others. A novel engineering method for separation of the variables in the differential equation of the elastic line of Bernoulli-Euler beam has been developed. The method can be utilized in engineering structures, leading to "a beam under moving load model" with generalized boundary conditions. This method has been implemented for analytical study of the dynamic response of the metal structure of a single girder bridge crane due to the telpher movement along the bridge girder. The modeled system includes: a crane bridge girder; a telpher, moving with a constant horizontal velocity; a load, elastically fixed to the telpher. The forced vibrations with their own frequencies and with a forced frequency, due to the telpher movement, have been analyzed. The loading resulting from the telpher uniform movement along the bridge girder is cyclical, which is a prerequisite for nucleation and propagation of fatigue cracks. The concept of "dynamic coefficient" has been introduced, which is defined as a ratio of the dynamic deflection of the bridge girder due to forced vibrations, to the static one. This ratio has been compared with the known from the literature empirical dynamic coefficient, which is due to the telpher track unevenness. The introduced dynamic coefficient shows larger values and has to be taken into account for engineering calculations of the bridge crane metal structure. In order to verify the degree of approximation, the obtained results have been compared with FEM outcomes. An additional comparison has been made with the exact solution, proposed by Timoshenko, for the case of simply supported beam subjected to a moving force. The comparisons show a good agreement.

개폐식 지붕구조의 움직임에 대한 공간구조물의 진동해석 (Vibration Analysis of Space Structure with Retractable Roof)

  • 김기철;강주원;김현수
    • 한국공간구조학회논문집
    • /
    • 제11권1호
    • /
    • pp.113-120
    • /
    • 2011
  • 지붕구조의 개폐가 가능한 체육시설 및 복합시설은 대공간구조물의 장점을 잘 나타내고 있으며 대공간구조물의 전천후 사용이 가능하도록 하였다. 개폐식 지붕구조는 구조형식, 마감재료, 개폐방식에 따라서 매우 다양하며 개폐방식에 따라서 중첩방식, 수평이동방식, 주름접기방식 등으로 구분할 수 있다. 특히 중첩방식이나 수평이동방식에 의한 지붕구조의 움직임은 주행하중, 충격하중, 관성력 및 제동력과 같은 동적하중이 구조물에 가해질 수 있으므로 이에 대한 대공간구조물의 진동해석이 필요할 것으로 사료된다. 지붕구조의 움직임에 의한 주행하중은 이동질량 또는 이동하중으로 적용할 수 있으나 비교적 움직임이 느린 개폐식 지붕구조에 의한 동적하중은 아동하중으로 적용하는 것이 타당하다. 따라서 본 논문에서는 지붕구조의 개폐로 야기되는 이동하중에 대한 새로운 적용방법을 제안하고 이를 이용하여 개폐식 지붕의 개폐속도에 따른 대공간구조물의 진동해석을 수행하였다. 본 논문에서 제안된 등가 이동하중은 지붕구조 개폐에 의한 대공간구조물의 진동해석에 있어서 매우 용이하게 활용할 수 있다.

흡수경계조건의 아스팔트 콘크리트 궤도 동적 해석에의 적용 (Application of the Absorbing Boundary Condition in Moving Force Analysis of Asphalt Concrete Track)

  • 이성혁;정근영;정우영
    • 한국철도학회논문집
    • /
    • 제19권1호
    • /
    • pp.54-66
    • /
    • 2016
  • 이 연구에서는 흡수경계조건을 적용하여 경계부분에서 발생한 갑작스런 하중조건의 변화에 의해 발생한 탄성파의 전달 및 반사현상을 감소시키고자 하였으며, 흡수경계조건이 사용 유무에 따른 효과를 검증하였다. 또한, 정점하중재하의 경우와 이동하중에 의한 동적해석결과를 비교함으로써 정점하중재하가 이동하중을 적절히 표현할 수 있는가의 여부를 분석하였다. 주행속력의 변화에 따른 KTX 열차조건에서의 이동하중에 의한 동적해석을 수행하여 아스팔트 콘크리트 궤도에서의 동적안정성을 검토하였으며, 준정적인 표준 열차하중에 의한 해석결과를 비교함으로써 아스팔트 콘크리트 궤도의 구조 안전성을 확인하였다.

ARIMA 모형에 기초한 수요실적자료 보정기법 개발 (A Correction Technique of Missing Load Data Based on ARIMA Model)

  • 박종배;이찬주;이재용;신중린;이창호
    • 대한전기학회논문지:전력기술부문A
    • /
    • 제53권7호
    • /
    • pp.405-413
    • /
    • 2004
  • Traditionally, electrical power systems had the vertically-integrated industry structures based on the economics of scale. However power systems have been recently reformed to increase the energy efficiency of the power system. According to these trends, Korean power industry has been partially restructured, and the competitive generation market was opened in 2001. In competitive electric markets, correct demand data are one of the most important issue to maintain the flexible electric markets as well as the reliable power systems. However, the measuring load data can have the uncertainty because of mechanical trouble, communication jamming, and other things. To obtain the reliable load data, an efficient evaluation technique to adust the missing load data is needed. This paper analyzes the load pattern of historical real data and then the turned ARIMA (Autoregressive Integrated Moving Average) model, PCHIP(Piecewise Cubic Interporation) and Branch & Bound method are applied to seek the missing parameters. The proposed method is tested under a variety of conditions and tested with historical measured data from the Korea Energy Management Corporation (KEMCO).

전력계통 유지보수 및 운영을 위한 향후 4주의 일 최대 전력수요예측 (Daily Maximum Electric Load Forecasting for the Next 4 Weeks for Power System Maintenance and Operation)

  • 정현우;송경빈
    • 전기학회논문지
    • /
    • 제63권11호
    • /
    • pp.1497-1502
    • /
    • 2014
  • Electric load forecasting is essential for stable electric power supply, efficient operation and management of power systems, and safe operation of power generation systems. The results are utilized in generator preventive maintenance planning and the systemization of power reserve management. Development and improvement of electric load forecasting model is necessary for power system maintenance and operation. This paper proposes daily maximum electric load forecasting methods for the next 4 weeks with a seasonal autoregressive integrated moving average model and an exponential smoothing model. According to the results of forecasting of daily maximum electric load forecasting for the next 4 weeks of March, April, November 2010~2012 using the constructed forecasting models, the seasonal autoregressive integrated moving average model showed an average error rate of 6,66%, 5.26%, 3.61% respectively and the exponential smoothing model showed an average error rate of 3.82%, 4.07%, 3.59% respectively.

열차주행에 의한 고속철도 교량의 진동이 인접 교량에 미치는 영향에 관한 연구 (A Study on the Effects of a High-Speed Railway Bridge Vibration induced by Moving Train on the Adjacent Bridge)

  • 김성일;이장석
    • 한국철도학회:학술대회논문집
    • /
    • 한국철도학회 2004년도 추계학술대회 논문집
    • /
    • pp.900-905
    • /
    • 2004
  • A study on the effects of a high-speed railway bridge vibration induced by moving train on the nearby bridge is performed. Longitudinal and lateral accelerations of slabs and piers which are calculated from moving load analysis of a high-speed railway bridge can be used as input ground motions for the adjacent bridge. Dynamic responses of the adjacent bridge considering soil-structure interaction effects are analyzed by sub-structure method. Analysis procedure is made of free field analysis, calculation of impedance and effective input load and soil-structure system analysis.

  • PDF

위치결정 스테이지 베이스 진동 모델링 및 저감기법 개발 (Modeling and Countermeasure for Positioning Stage Base Vibration)

  • 박아영;임재곤;홍성욱
    • 한국생산제조학회지
    • /
    • 제19권4호
    • /
    • pp.476-484
    • /
    • 2010
  • Precise positioning stages are often employed for precise machinery. For the purpose of vibration isolation, these precise positioning stages are mounted on a heavy base structure which is supported by compliant springs. Then the base structure is subjected to residual vibration due to the reactive force and vertical moving load induced by the stage motion. This paper investigates the vibration behavior of a positioning stage base and the associated vibration suppression technique. A dynamic model is developed to investigate the base vibration due to the reactive force and moving load effects by the moving stage. An input shaping technique is also developed to suppress the residual vibrations in base structures. Simulations and experiments show that the developed dynamic model adequately represents the base vibration and that the proposed input shaping technique effectively removes the residual vibrations from the positioning stage base.

Non-axisymmetric dynamic response of buried orthotropic cylindrical shells under moving load

  • Singh, V.P.;Dwivedi, J.P.;Upadhyay, P.C.
    • Structural Engineering and Mechanics
    • /
    • 제8권1호
    • /
    • pp.39-51
    • /
    • 1999
  • The dynamic response of buried pipelines has gained considerable importance because these pipelines perform vital role in conducting energy, water, communication and transportation. After realizing the magnitude of damage, and hence, the human uncomfort and the economical losses, researchers have paid sincere attention to this problem. A number of papers have appeared in the past which discuss the different aspects of the problem. This paper presents a theoretical analysis of non-axisymmetric dynamic response of buried orthotropic cylindrical shell subjected to a moving load along the axis of the shell. The orthotropic shell has been buried in a homogeneous, isotropic and elastic medium of infinite extent. A thick shell theory including the effects of rotary inertia and shear deformation has been used. A perfect bond between the shell and the surrounding medium has been assumed. Results have been obtained for very hard (rocky), medium hard and soft soil surrounding the shell. The effects of shell orthotropy have been brought out by varying the non-dimensional orthotropic parameters over a long range. Under these conditions the shell response is studied in axisymmetric mode as well as in the flexural mode. It is observed that the shell response is significantly affected by change in orthotropic parameters and also due to change of response mode. It is observed that axial deformation is large in axisymmetric mode as compared to that in flexural mode.

Dynamic analysis of functionally graded (FG) nonlocal strain gradient nanobeams under thermo-magnetic fields and moving load

  • Alazwari, Mashhour A.;Esen, Ismail;Abdelrahman, Alaa A.;Abdraboh, Azza M.;Eltaher, Mohamed A.
    • Advances in nano research
    • /
    • 제12권3호
    • /
    • pp.231-251
    • /
    • 2022
  • Dynamic behavior of temperature-dependent Reddy functionally graded (RFG) nanobeam subjected to thermomagnetic effects under the action of moving point load is carried out in the present work. Both symmetric and sigmoid functionally graded material distributions throughout the beam thickness are considered. To consider the significance of strain-stress gradient field, a material length scale parameter (LSP) is introduced while the significance of nonlocal elastic stress field is considered by introducing a nonlocal parameter (NP). In the framework of the nonlocal strain gradient theory (NSGT), the dynamic equations of motion are derived through Hamilton's principle. Navier approach is employed to solve the resulting equations of motion of the functionally graded (FG) nanoscale beam. The developed model is verified and compared with the available previous results and good agreement is observed. Effects of through-thickness variation of FG material distribution, beam aspect ratio, temperature variation, and magnetic field as well as the size-dependent parameters on the dynamic behavior are investigated. Introduction of the magnetic effect creates a hardening effect; therefore, higher values of natural frequencies are obtained while smaller values of the transverse deflections are produced. The obtained results can be useful as reference solutions for future dynamic and control analysis of FG nanobeams reinforced nanocomposites under thermomagnetic effects.