• Title/Summary/Keyword: moving imaging

Search Result 184, Processing Time 0.028 seconds

Properties of resolution improvement for three-dimensional integral imaging using dynamic microlens array (동적 마이크로 렌즈 배열을 사용한 3차원 완전 결상에서의 해상도 개선 특성)

  • 조명진;김복수;장주석
    • Korean Journal of Optics and Photonics
    • /
    • v.15 no.2
    • /
    • pp.130-136
    • /
    • 2004
  • We investigate characteristics of viewing resolution improvement in three-dimensional integral imaging, when a dynamic lens array method is adopted. We show that the viewing resolution changes for different moving directions and distances of the lens array through computer-synthesized integral imaging. From this study, optimal moving conditions of the lens array for efficient viewing resolution improvement can be determined.

Stationary and Moving Computed Radiography Grids : Comparative Observer's Perception (Computed Radiography에서 고정형 그리드와 이동형 그리드 영상의 인식률 비교)

  • Lee, Kiho;Lee, Changhoon;Jin, Gyehwan
    • Journal of the Korean Society of Radiology
    • /
    • v.9 no.7
    • /
    • pp.515-521
    • /
    • 2015
  • This study assessed the degradation of image quality caused by grid artifacts and $moir{\acute{e}}$ pattern artifacts in a stationary grid, and the degradation of image quality caused by cut off artifacts in a moving grid. X-ray images were acquired in a stationary grid and a moving grid with X-ray exposure conditions of 100 cm, 80 kVp, and 30 mA using a CDRAD phantom and a 24 cm thickness acrylic phantom. Observer's perception of X-ray imaging using CDRAD Analyzer was mean 49.36, standard deviation 3.76, maximum 55.56, and minimum 38.67 in the stationary grid, and 47.04, 12.69, 55.56, and 20.89, respectively, in the moving grid. The stationary grid was superior to the moving grid in terms of the mean and standard deviation of observer's perception.

Current status of integral imaging after 100 years of history

  • Lee, Byoung-Ho
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2008.10a
    • /
    • pp.1127-1130
    • /
    • 2008
  • Integral imaging is a three-dimensional display technique which has 100 years of history. The method is characterized by offering full parallax, almost-continuous viewpoints and easiness of moving picture display. In this paper, the history of the method is briefly explained and overview of its current status is provided.

  • PDF

X-ray Micro-Imaging Technique for Simultaneous Measurement of Size and Velocity of Micro-Bubbles (X-ray 미세 영상기법을 이용한 미세기포의 크기 및 속도 동시 측정기술 개발)

  • Kim, Seok;Lee, Sang-Joon
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.28 no.6
    • /
    • pp.659-664
    • /
    • 2004
  • It is important to measure precisely the size and velocity of micro-bubbles used in various field. The synchrotron X-ray micro-imaging technique was employed to measure the size and velocity of micro-bubbles moving in an opaque tube simultaneously. Phase contrast images were obtained at interfaces of micro-bubbles between water and air due to their different refractive indices. The X-ray micro-imaging technique was found to measure an optical fiber with an accuracy of 0.2%. Micro-bubbles of 20∼60$\mu\textrm{m}$ diameter moving upward in an opaque tube (${\Phi}$=2.7mm) were tested to measure bubble size and up-rising velocity. For DI water, the measured velocity of micro-bubbles is nearly proportional to the square of bubble size, agreed well with the theoretical result. In addition, the synchrotron X-ray micro-imaging technique can measure accurately the size and velocity of several overlapped micro-bubbles.

Synchrotron X-ray Micro-imaging Technique for Simultaneous Measurement of Size and Velocity of Micro-bubbles (X-ray 미세 영상기법을 이용한 미세기포의 크기 및 속도 동시측정)

  • Kim, Seok;Lee, Sang-Joon
    • Proceedings of the KSME Conference
    • /
    • 2004.04a
    • /
    • pp.1744-1748
    • /
    • 2004
  • It is important to measure precisely the size and velocity of micro-bubbles used in various field. The synchrotron X-ray micro-imaging technique was employed to measure the size and velocity of micro-bubbles moving in an opaque tube simultaneously. Phase contrast images were obtained at interfaces of micro-bubbles between water and air due to their different refractive indices. The X-ray micro-imaging technique was found to measure an optical fiber with an accuracy of 0.2%. Micro-bubbles of $10{\sim}60{\mu}m$ diameter moving upward in an opaque tube (${\phi}=2.7mm$) were tested to measure bubble size and up-rising velocity. For DI water, the measured velocity of micro-bubbles is nearly proportional to the square of bubble size, agreed well with the theoretical result. In addition, the synchrotron X-ray micro-imaging technique can measure accurately the size and velocity of several overlapped micro-bubbles.

  • PDF

Design of ECG/PPG Gating System in MRI Environment (MRI용 심전도/혈류 게이팅 시스템 설계)

  • Jang, Bong-Ryeol;Park, Ho-Dong;Lee, Kyoung-Joung
    • Journal of Biomedical Engineering Research
    • /
    • v.28 no.1
    • /
    • pp.132-138
    • /
    • 2007
  • MR(magnetic resonance) image of moving organ such as heart shows serious distortion of MR image due to motion itself. To eliminate motion artifacts, MRI(magnetic resonance imaging) scan sequences requires a trigger pulse like ECG(electro-cardiography) R-wave. ECG-gating using cardiac cycle synchronizes the MRI sequence acquisition to the R-wave in order to eliminate image motion artifacts. In this paper, we designed ECG/PPG(photo-plethysmography) gating system which is for eliminating motion artifacts due to moving organ. This system uses nonmagnetic carbon electrodes, lead wire and shield case for minimizing RF(radio-frequency) pulse and gradient effect. Also, we developed a ECG circuit for preventing saturation by magnetic field and a finger plethysmography sensor using optic fiber. And then, gating pulse is generated by adaptive filtering based on NLMS(normalized least mean square) algorithm. To evaluate the developed system, we measured and compared MR imaging of heart and neck with and without ECG/PPG gating system. As a result, we could get a clean image to be used in clinically. In conclusion, the designed ECG/PPG gating system could be useful method when we get MR imaging of moving organ like a heart.

A study on shield on the center of gravity moving designed for high efficiency operation for the gamma-ray imaging detector (감마선 영상화 장치용 고효율 동작을 위한 차폐체 무게중심 이동 설계에 관한 연구)

  • Park, Gang-teck;Lee, Nam-ho;Hwang, Young-gwan
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2016.10a
    • /
    • pp.948-949
    • /
    • 2016
  • In this study, we perform the structure change of the shielding this is applied for gamma-ray detectors for imaging of gamma-ray source. Through previous studies, we implemented the commercially available gamma-ray imaging apparatus similar to the shielding body but weight reduction, center of gravity moving of shield. In this paper, we changed a shield for motion control detectors efficient movement. We performed the MCNP simulation of shield design and then we obtained the results of reducing the weight of the 17% and moving of center of gravity the shield center.

  • PDF

Focus-adjustment Method for a High-magnification Zoom-lens System (고배율 줌 광학계의 상면 오차 보정 방법)

  • Jae Myung Ryu
    • Korean Journal of Optics and Photonics
    • /
    • v.34 no.2
    • /
    • pp.66-71
    • /
    • 2023
  • Zoom lenses are now starting to be applied to mobile-phone cameras as well. A zoom lens applied to a mobile-phone camera is mainly used to capture images in the telephoto range. Such an optical system has a long focal length, similar to that of a high-magnification zoom optical system, so the position of the imaging device also shifts significantly, due to manufacturing errors of the lenses and mechanical parts. In the past, the positional shift of the imaging device was corrected by moving the first lens group and the total optical system, but this paper confirms that the position of the imaging device can be corrected by selecting any two moving lens groups. However, it is found that more distance must be secured in the front and rear of a moving lens group for this purpose.

Numerical Calculation for Autofocus of Zoom Lenses by Using Gaussian Brackets (가우스 괄호법을 이용한 줌 렌즈의 조출량에 대한 수치해석 계산법)

  • Jo, Jae-Heung;Lee, Do-Kyung;Lee, Sang-On;Ryu, Jae-Myung;Kang, Geon-Mo;Lee, Hae-Jin
    • Korean Journal of Optics and Photonics
    • /
    • v.20 no.3
    • /
    • pp.166-174
    • /
    • 2009
  • When the object distance of a zoom lens with finite object distances is varied, we can fix the image at a fixed image plane by moving only one zoom lens group (autofocus group) without moving all zoom lens groups for the autofocus. We theoretically formulated and numerically calculated the moving distances of the autofocus group by using Gaussian brackets and a paraxial ray tracing method. The solutions of this method can be consistently and flexibly used in the initial design for the moving distance of autofocus group within these zoom loci in all types of zoom lens. Finally, in order to verify the usefulness of this method, we show that the moving distance of an autofocus group can be rapidly and diversely obtained in one example of $M_{5n}$ zoom lens type.

Simultaneous measurement of size and velocity of micro-bubbles in an opaque tube using X-ray micro-imaging technique (X-ray 미세 영상기법을 이용한 불투명 튜브 내부 미세기포의 크기 및 속도 동시 측정)

  • Kim Seok;Lee Sang Joon
    • 한국가시화정보학회:학술대회논문집
    • /
    • 2003.11a
    • /
    • pp.45-46
    • /
    • 2003
  • The x-ray micro-imaging technique was employed to measure the size and velocity of micro-bubbles moving in an opaque tube simultaneously. Phase contrast images were obtained at interfaces of micro-bubbles between water and air due to different refractive index. Micro-bubbles of $20\~120{\mu}m$ diameter moving upward in an opaque tube $(\phi=2.7mm)$ were tested. For two different working fluids of tap water and DI water, the measured velocity of micro-bubbles is roughly proportional to the square of bubble size.

  • PDF