• Title/Summary/Keyword: moving beam

Search Result 445, Processing Time 0.027 seconds

Dynamic Analysis of the Cracked Timoshenko Beam under a Moving Mass using Finite Element Method (유한요소법을 이용한 이동질량 하에 크랙을 갖는 티모센코 보의 동특성 연구)

  • Kang Hwan-Jun;Lee Shi-Bok;Hong Keum-Shik;Jeon Seung-Min
    • Proceedings of the Korea Committee for Ocean Resources and Engineering Conference
    • /
    • 2004.11a
    • /
    • pp.271-276
    • /
    • 2004
  • In this paper. dynamic behavior of the cracked beam under a moving mass is presented using the finite element method (FEM). Model accuracy is improved with the following consideration: (1) FE model with Timoshenko beam element (2) Additional flexibility matrix due to crack presence (3) Interaction forces between the moving mass and supported beam. The Timoshenko bean model with a two-node finite element is constructed based on Guyan condensation that leads to the results of classical formulations. but in a simple and systematic manner. The cracked section is represented by local flexibility matrix connecting two unchanged beam segments and the crack as modeled a massless rotational spring. The inertia force due to the moving mass is also involved with gravity force equivalent to a moving load. The numerical tests for various mass levels. crack sizes. locations and boundary conditions were performed.

  • PDF

Dynamics of an Axially Moving Bernoulli-Euler Beam: Spectral Element Modeling and Analysis

  • Hyungmi Oh;Lee, Usik;Park, Dong-Hyun
    • Journal of Mechanical Science and Technology
    • /
    • v.18 no.3
    • /
    • pp.395-406
    • /
    • 2004
  • The spectral element model is known to provide very accurate structural dynamic characteristics, while reducing the number of degree-of-freedom to resolve the computational and cost problems. Thus, the spectral element model for an axially moving Bernoulli-Euler beam subjected to axial tension is developed in the present paper. The high accuracy of the spectral element model is then verified by comparing its solutions with the conventional finite element solutions and exact analytical solutions. The effects of the moving speed and axial tension on the vibration characteristics, wave characteristics, and the static and dynamic stabilities of a moving beam are investigated.

Experimental Verification on Dynamic Responses of a Cantilevered Beam under a Moving Mass with Accelerations (가속을 갖는 이동질량에 의한 외팔보의 동적응답에 관한 실험적 검증)

  • Kim, H.J.;Ryu, B.J.;Kim, H.J.;Yoon, C.S.
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2004.11a
    • /
    • pp.307-310
    • /
    • 2004
  • The paper presents the numerical and experimental results for the dynamic response vibration of a cantilevered beam subjected to a moving mass with variable speeds. Governing equations of motion under a moving mass were derived by Galerkin's mode summation method taking into account the effects of all forces due to moving mass, and the numerical results were calculated by Runge-Kutta integration method. The effects of the speed, acceleration and the magnitude of the moving mass on the response of the beam are fully investigated. In order to verify numerical results, some experiments were conducted, and the numerical results have a little difference with the experimental ones.

  • PDF

A Study on the Dynamic Behavior of a Simply Supported Beam with Moving Masses and Cracks (이동질량과 크랙을 가진 단순지지 보의 동특성에 관한 연구)

  • 윤한익;손인수;조정래
    • Journal of Ocean Engineering and Technology
    • /
    • v.17 no.6
    • /
    • pp.47-52
    • /
    • 2003
  • To determine the effect of transverse open crack on the dynamic behavior of simply-supported Euler-Bernoulli beam with the moving masses, an iterative modal analysis approach is developed. The influence of depth and position of the crack in the beam, on the dynamic behavior of the simply supported beam system, have been studied by numerical method. The cracked section is represented by a local flexibility matrix, connecting two undamaged beam segments that is, the crack is modeled as a rotational spring. This flexibility matrix defines the relationship between the displacements and forces across the crack section, and is derived by applying a fundamental fracture mechanics theory. As the depth of the crack is increased, the mid-span deflection of the simply-supported beam, with the moving mass, is increased. The crack is positioned in the middle point of the pipe, and the mid-span defection of the simply-supported pipe represents maximum deflection.

An inclined FGM beam under a moving mass considering Coriolis and centrifugal accelerations

  • Shokouhifard, Vahid;Mohebpour, Saeedreza;Malekzadeh, Parviz;Alighanbari, Hekmat
    • Steel and Composite Structures
    • /
    • v.35 no.1
    • /
    • pp.61-76
    • /
    • 2020
  • In this paper, the dynamic behaviour of an inclined functionally graded material (FGM) beam with different boundary conditions under a moving mass is investigated based on the first-order shear deformation theory (FSDT). The material properties vary continuously along the beam thickness based on the power-law distribution. The system of motion equations is derived by using Hamilton's principle. The finite element method (FEM) is adopted to develop a general solution procedure. The moving mass is considered on the top surface of the beam instead of supposing it on the mid-plane. In order to consider the Coriolis, centrifugal accelerations and the friction force, the contact force method is used. Moreover, the effects of boundary conditions, the moving mass velocity and various material distributions are studied. For verification of the present results, a comparative fundamental frequency analysis of an FGM beam is conducted and the dynamic transverse displacements of the homogeneous and FGM beams traversed by a moving mass are compared with those in the existing literature. There is a good accord in all compared cases. In this study for the first time in dynamic analysis of the inclined FGM beams, the Coriolis and centrifugal accelerations of the moving mass are taken into account, and it is observed that these accelerations can be ignored for the low-speeds of the moving mass. The new provided results for dynamics of the inclined FGM beams traversed by a moving mass can be significant for the scientific and engineering community in the area of FGM structures.

Dynamics of an Axially Moving Timoshenko Beam (축방향으로 이동하는 티모센코보의 동특성 해석)

  • Kim, Joohong;Hyungmi Oh;Lee, Usik
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2002.11a
    • /
    • pp.403-403
    • /
    • 2002
  • The use of frequency-dependent spectral element matrix (or exact dynamic stiffness matrix) in structural dynamics is known to provide very accurate solutions, while reducing the number of degrees-of-freedom to resolve the computational and cost problems. Thus, in the present paper, the spectral element model is formulated for the axially moving Timoshenko beam under a uniform axial tension. (omitted)

  • PDF

Dynamic Analysis of the Beam Subjected to the Axial Load and Moving Mass (이동질량 및 축 하중의 영향을 받는 보의 동적 거동)

  • Lee, Kyu-Ho;Chung, Jin-Tai
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.21 no.3
    • /
    • pp.271-279
    • /
    • 2011
  • In this study, the dynamic analysis of a beam is analyzed by using the finite element method when the beam has moving mass and axial load. To consider the contact force between the moving mass and beam, coupled nonlinear equations of contact dynamics are derived, and then the weak form for the finite element method is established. The finite element computer programs based on the Lagrange multiplier method are developed to compute the contact force. Furthermore, a variety of simulations are performed for various design parameters such as moving mass velocity, compressive axial load and tension load. Finally, relations between the dynamic response and contact force are also discussed.

Effects of a Moving Mass on the Dynamic Behavior of Cantilever Beams with Double Cracks

  • Son, In-Soo;Cho, Jeong-Rae;Yoon, Han-Ik
    • International Journal of Precision Engineering and Manufacturing
    • /
    • v.9 no.3
    • /
    • pp.33-39
    • /
    • 2008
  • The effects of a double crack and tip masses on the dynamic behavior of cantilever beams with a moving mass are studied using numerical methods. The cantilever beams are modeled by applying Euler-Bernoulli beam theory. The cracked sections are represented by a local flexibility matrix connecting three undamaged beam segments. The influences of the crack, moving mass, and tip mass, and the coupling of these factors on the vibration mode and the frequencies of the double-cracked cantilever beams are determined analytically. The methodology provides a basis for analyzing the dynamic behavior of a beam with an arbitrary number of cracks and a moving mass.

Experimental Verification of Damage Identification Method using Moving load Response (이동하중응답을 이용한 손상인식기법의 실험적 검증)

  • Choi, Sang-Hyun;Kim, Dae-Hyork
    • Proceedings of the KSR Conference
    • /
    • 2009.05a
    • /
    • pp.552-559
    • /
    • 2009
  • Most damage identification methods for structural health monitoring developed to date utilize modal domain responses which require postprocessing and inevitably contain errors in transforming the domain of responses. In this paper, the feasibility of a damage identification method based on dynamics responses from moving loads is experimentally verified. The experiment is performed via applying periodic and non-periodic moving loads to a steel beam and acceleration and displacement responses of the beam is measured. The moving loads is applied using steel balls and the damage of a structure is simulated by saw-cutting the beam. The damage identification results using the measured responses show that the moving load response based damage identification method successfully identify all damages in the beam.

  • PDF

A new approach to modeling the dynamic response of Bernoulli-Euler beam under moving load

  • Maximov, J.T.
    • Coupled systems mechanics
    • /
    • v.3 no.3
    • /
    • pp.247-265
    • /
    • 2014
  • This article discusses the dynamic response of Bernoulli-Euler straight beam with angular elastic supports subjected to moving load with variable velocity. A new engineering approach for determination of the dynamic effect from the moving load on the stressed and strained state of the beam has been developed. A dynamic coefficient, a ratio of the dynamic to the static deflection of the beam, has been defined on the base of an infinite geometrical absolutely summable series. Generalization of the R. Willis' equation has been carried out: generalized boundary conditions have been introduced; the generalized elastic curve's equation on the base of infinite trigonometric series method has been obtained; the forces of inertia from normal and Coriolis accelerations and reduced beam mass have been taken into account. The influence of the boundary conditions and kinematic characteristics of the moving load on the dynamic coefficient has been investigated. As a result, the dynamic stressed and strained state has been obtained as a multiplication of the static one with the dynamic coefficient. The developed approach has been compared with a finite element one for a concrete engineering case and thus its authenticity has been proved.