• Title/Summary/Keyword: moving average process

Search Result 241, Processing Time 0.021 seconds

Research on UAV access deployment algorithm based on improved virtual force model

  • Zhang, Shuchang;Wu, Duanpo;Jiang, Lurong;Jin, Xinyu;Cen, Shuwei
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.16 no.8
    • /
    • pp.2606-2626
    • /
    • 2022
  • In this paper, a unmanned aerial vehicle (UAV) access deployment algorithm is proposed, which is based on an improved virtual force model to solve the poor coverage quality of UAVs caused by limited number of UAVs and random mobility of users in the deployment process of UAV base station. First, the UAV-adapted Harris Hawks optimization (U-AHHO) algorithm is proposed to maximize the coverage of users in a given hotspot. Then, a virtual force improvement model based on user perception (UP-VFIM) is constructed to sense the mobile trend of mobile users. Finally, a UAV motion algorithm based on multi-virtual force sharing (U-MVFS) is proposed to improve the ability of UAVs to perceive the moving trend of user equipments (UEs). The UAV independently controls its movement and provides follow-up services for mobile UEs in the hotspot by computing the virtual force it receives over a specific period. Simulation results show that compared with the greedy-grid algorithm with different spacing, the average service rate of UEs of the U-AHHO algorithm is increased by 2.6% to 35.3% on average. Compared with the baseline scheme, using UP-VFIM and U-MVFS algorithms at the same time increases the average of 34.5% to 67.9% and 9.82% to 43.62% under different UE numbers and moving speeds, respectively.

A Study on UBM Method Detecting Mean Shift in Autocorrelated Process Control

  • Jun, Sang-Pyo
    • Journal of the Korea Society of Computer and Information
    • /
    • v.25 no.12
    • /
    • pp.187-194
    • /
    • 2020
  • In today's process-oriented industries, such as semiconductor and petrochemical processes, autocorrelation exists between observed data. As a management method for the process where autocorrelation exists, a method of using the observations is to construct a batch so that the batch mean approaches to independence, or to apply the EWMA (Exponentially Weighted Moving Average) statistic of the observed value to the EWMA control chart. In this paper, we propose a method to determine the batch size of UBM (Unweighted Batch Mean), which is commonly used as a management method for observations, and a method to determine the optimal batch size based on ARL (Average Run Length) We propose a method to estimate the standard deviation of the process. We propose an improved control chart for processes in which autocorrelation exists.

Analysis of efficiency of fishing operation by the change in the size of coastal composite fishing boat (연안복합어선의 크기 변화에 따른 어로작업 효율 분석)

  • KIM, Min-Son;HWANG, Bo-Kyu;CHANG, Ho-Young
    • Journal of the Korean Society of Fisheries and Ocean Technology
    • /
    • v.56 no.2
    • /
    • pp.126-137
    • /
    • 2020
  • This study collected and analyzed the fishing process of existing fishing boat and newly built fishing boat by using the video observation methods to understand the improvement of fishing operation efficiency and safety according to the scale change of coastal composite fishing boat. The fishing operation efficiency was calculated by analyzing the frequency of movement, the movement distance and the moving time per basket used in the fishing process to derive the improvement of the newly built fishing boat compared to the existing fishing boat. It was confirmed that the mean frequency of movements decreased to 13.9%, the average moving time decreased to 21.8%, the mean movement distance increased to 20.5% and the movement through the top of gunwale did not occur. Movement of frequency, increased and time according to the fishing operation were directly affected by the width of side passages and the presence or absence of walking obstruction such as bulwark stay, hatch coaming and fishing gears on deck. The results of this study are expected to be used as basic data for redesigning into a safe and efficient coastal composite fishing boat in the future.

An Economic Design of the Integrated Process Control Procedure with Repeated Adjustments and EWMA Monitoring

  • Park Changsoon;Jeong Yoonjoon
    • Proceedings of the Korean Statistical Society Conference
    • /
    • 2004.11a
    • /
    • pp.179-184
    • /
    • 2004
  • Statistical process control (SPC) and engineering process control (EPC) are based on different strategies for process quality improvement. SPC reduces process variability by detecting and eliminating special causes of process variation, while EPC reduces process variability by adjusting compensatory variables to keep the quality variable close to target. Recently there has been need for an integrated process control (IPC) procedure which combines the two strategies. This article considers a scheme that simultaneously applies SPC and EPC techniques to reduce the variation of a process. The process disturbance model under consideration is an IMA(1,1) model with a location shift. The EPC part of the scheme adjusts the process, while the SPC part of the scheme detects the occurrence of a special cause. For adjusting the process repeated adjustment is applied by compensating the predicted deviation from target. For detecting special causes the two kinds of exponentially weighted moving average (EWMA) control chart are applied to the observed deviations: One for detecting location shift and the other for detecting increment of variability. It was assumed that the adjustment of the process under the presence of a special cause may change any of the process parameters as well as the system gain. The effectiveness of the IPC scheme is evaluated in the context of the average cost per unit time (ACU) during the operation of the scheme. One major objective of this article is to investigate the effects of the process parameters to the ACU. Another major objective is to give a practical guide for the efficient selection of the parameters of the two EWMA control charts.

  • PDF

Comparison of EWMA and CUSUM Charts with Variable Sampling Intervals for Monitoring Variance-Covariance Matrix

  • Chang, Duk-Joon
    • Journal of Integrative Natural Science
    • /
    • v.13 no.4
    • /
    • pp.152-157
    • /
    • 2020
  • To monitor all elements simultaneously of variance-covariance matrix Σ of several correlated quality characteristics under multivariate normal process Np($\underline{\mu}$, Σ), multivariate exponentially weighted moving average (EWMA) chart and cumulative sum (CUSUM) chart are considered and compared. Numerical performances of the considered variable sampling interval (VSI) charts are evaluated using average run length (ARL), average time to signal (ATS), average number of switches (ANSW) to signal, and the probability of switch Pr(switch) between two sampling interval d1 and d2 where d1 < d2. For small or moderate changes of Σ, the performances of multivariate EWMA chart is approximately equivalent to that of multivariate CUSUM chart.

Influence of Noise on Chaotic Time Series (카오스 시계열에 대한 잡음의 영향)

  • Choi, Min-Ho;Lee, Eun-Tae;Kim, Hung-Soo
    • Journal of Korea Water Resources Association
    • /
    • v.42 no.4
    • /
    • pp.355-363
    • /
    • 2009
  • The purpose of this paper is to investigate the influence of noise on chaotic time series. We used two time series of Lorenz system and of Great Salt Lake's volume data which are well known as chaotic systems. This study investigated the attractors, correlation dimensions, and Close Returns Plots and Close Returns Histograms of two time series to investigate the influence of noise as increasing noise level. We performed Chi-square test to the relative frequency of Close Returns Histogram from Close Returns Plot for the investigation of stochastic process of chaotic time series as increasing noise level of time series. As the results, two time series were changed from chaotic to stochastic series as noise level is increased. Finally, we analyzed the effect of noise cancellation by using Simple Moving Average method. The results of applications of Simple Moving Average method to Lorenz and GSL time series showed that we could effectively cancel the noise. Then we could confirm the applicability of Simple Moving Average method to cancel the noise for the hydrologic time series having chaotic characteristics.

Precision Speed Control of PMSM for Stimulation of the Vestibular System Using Rotatory Chair (전정기관 자극용 회전자극기를 취한 PMSM의 정밀 속도제어)

  • 고종선;이태호;박병림;전칠환
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.5 no.5
    • /
    • pp.459-466
    • /
    • 2000
  • A new control method for precision robust speed control of a PMSM(Permanent Magnet Synchronous Motor) using load torque observer is presented. Using this system, we can more precisely evacuate of vestibular function. Until now a rotating chair system, so called 2D-stimulator, which has vertical rotate axis is used to make dizziness. However, an inclined rotating chair system witch is called 3D-stimulator is needed to obtain the precise dizziness data. This 3D-stimulator include unbalanced load caused by unbalanced center of mass. In this case, new compensation method is considered to obtain robust speed control using load torque observer. To reduce the effect of this disturbance, we can use dead-beat observer that has high gain. The application of the load to torque observer is published in for position control. However, there is a problem of using speed information such as amplifying effect of noise. Therefore, we can reduce a noise effect by moving average process. The experimental results are depicted in this paper to show the effect of this proposed algorithm.

  • PDF

A Reconfigurable Spatial Moving Average Filter in Sampler-Based Discrete-Time Receiver (샘플러 기반의 수신기를 위한 재구성 가능한 이산시간 공간상 이동평균 필터)

  • Cho, Yong-Ho;Shin, Soo-Hwan;Kweon, Soon-Jae;Yoo, Hyung-Joun
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.49 no.10
    • /
    • pp.169-177
    • /
    • 2012
  • A non-decimation second-order spatial moving average (SMA) discrete-time (DT) filter is proposed with reconfigurable null frequencies. The filter coefficients are changeable, and it can be controlled by switching sampling capacitors. So, interferers can be rejected effectively by flexible nulls. Since it operates without decimation, it does not change the sample rate and aliasing problem can be avoided. The filter is designed with variable weight of coefficients as $1:{\alpha}:1$ where ${\alpha}$ varies from 1 to 2. This corresponds to the change of null frequencies within the range of fs/3~fs/2 and fs/2~2fs/3. The proposed filter is implemented in the TSMC 0.18-${\mu}m$ CMOS process. Simulation shows that null frequencies are changeable in the range of 0.38~0.49fs and 0.51~0.62fs.

Prediction of Covid-19 confirmed number of cases using ARIMA model (ARIMA모형을 이용한 코로나19 확진자수 예측)

  • Kim, Jae-Ho;Kim, Jang-Young
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.25 no.12
    • /
    • pp.1756-1761
    • /
    • 2021
  • Although the COVID-19 outbreak that occurred in Wuhan, Hubei around December 2019, seemed to be gradually decreasing, it was gradually increasing as of November 2020 and June 2021, and estimated confirmed cases were 192 million worldwide and approximately 184 thousand in South Korea. The Central Disaster and Safety Countermeasures Headquarters have been taking strong countermeasures by implementing level 4 social distancing. However, as the highly infectious COVID-19 variants, such as Delta mutation, have been on the rise, the number of daily confirmed cases in Korea has increased to 1,800. Therefore, the number of cumulative confirmed COVID-19 cases is predicted using ARIMA algorithms to emphasize the severity of COVID-19. In the process, differences are used to remove trends and seasonality, and p, d, and q values are determined and forecasted in ARIMA using MA, AR, autocorrelation functions, and partial autocorrelation functions. Finally, forecast and actual values are compared to evaluate how well it was forecasted.