Recently, landslides have frequently occurred on natural slopes during periods of intense rainfall. With a rapidly increasing population on or near steep terrain in Korea, landslides have become one of the most significant natural hazards. Thus, it is necessary to protect people from landslides and to minimize the damage of houses, roads and other facilities. To accomplish this goal, many landslide prediction methods have been developed in the world. In this study, a simple landslide prediction system that enables people to escape the endangered area is introduced. The system is focused to debris flows which happen frequently during periods of intense rainfall. The system is based on the wireless sensor network (WSN) that is composed of sensor nodes, gateway, and server system. Sensor nodes comprising a sensing part and a communication part are developed to detect ground movement. Sensing part is designed to measure inclination angle and acceleration accurately, and communication part is deployed with Bluetooth (IEEE 802.15.1) module to transmit the data to the gateway. To verify the feasibility of this landslide prediction system, a series of experimental studies was performed at a small-scale earth slope equipped with an artificial rainfall dropping device. It is found that sensing nodes installed at slope can detect the ground motion when the slope starts to move. It is expected that the landslide prediction system by wireless senor network can provide early warnings when landslides such as debris flow occurs.
International journal of advanced smart convergence
/
v.12
no.4
/
pp.75-87
/
2023
We designed to employ an Artificial Intelligence learning model to predict real estate prices and determine the reasons behind their changes, with the goal of using the results as a guide for policy. Numerous studies have already been conducted in an effort to develop a real estate price prediction model. The price prediction power of conventional time series analysis techniques (such as the widely-used ARIMA and VAR models for univariate time series analysis) and the more recently-discussed LSTM techniques is compared and analyzed in this study in order to forecast real estate prices. There is currently a period of rising volatility in the real estate market as a result of both internal and external factors. Predicting the movement of real estate values during times of heightened volatility is more challenging than it is during times of persistent general trends. According to the real estate market cycle, this study focuses on the three times of extreme volatility. It was established that the LSTM, VAR, and ARIMA models have strong predictive capacity by successfully forecasting the trading price index during a period of unusually high volatility. We explores potential synergies between the hybrid artificial intelligence learning model and the conventional statistical prediction model.
Journal of the Computational Structural Engineering Institute of Korea
/
v.16
no.4
/
pp.369-376
/
2003
In this paper, a nonlinear structural analysis for the composite structure composed of the spent nuclear fuel disposal canister and the 50㎝ thick bentonite buffer is carried out to predict the collapse of the canister while the horizontal symmetric sudden rock movement of 10㎝ is applied on the composite structure. This sudden rock movement is anticipated by the earthquake etc. at a deep underground. Elastoplastic material model is adopted. Drucket-Prager yield criterion is used for the material yield prediction of the bentonite buffer and von-Mises yield criterion is used for the material yield prediction of the canister(cast iron, copper). Analysis results show that even though very large deformations occur beyond the yield point in the bentonite buffet, the canister structure still endures elastic small strains and stresses below the yield strength. Hence, the 50㎝ thick bentonite buffet can protect the canister safely against the 10㎝ sudden rock movement by earthquake etc.. Analysis results also show that bending deformations occur in the canister structure due to the shear deformation of the bentonite buffer.
Neural networks have been used to predict the direction of stock index movement from past data. The conventional research that predicts the upward or downward movement of the stock index predicts a rise or fall even with small changes in the index. It is highly likely that losses will occur when trading ETFs by use of the prediction. In this paper, a neural network model that predicts the movement direction of the daily KOrea composite Stock Price Index (KOSPI) to reduce ETF trading losses and earn more than a certain amount per trading is presented. The proposed model has outputs that represent rising (change rate in index ${\geq}{\alpha}$), falling (change rate ${\leq}-{\alpha}$) and neutral ($-{\alpha}$ change rate < ${\alpha}$). If the forecast is rising, buy the Leveraged Exchange Traded Fund (ETF); if it is falling, buy the inverse ETF. The hit ratio (HR) of PNN1 implemented in this paper is 0.720 and 0.616 in the learning and the evaluation respectively. ETF trading yields a yield of 8.386 to 16.324 %. The proposed models show the better ETF trading success rate and yield than the neural network models predicting KOSPI.
Cephalometric prediction tracing is the preoperative double checking procedure which can predict bony and soft tissue change. Soft tissue profile prediction is routinely performed according to the known ratios of the soft to hard tissue movement which can vary considerably in each individual. Besides interindividual variation of the ratios of the soft to hard tissue change, actual results of the postoperative soft tissue profile can reflect other important modifying factors if it is compared with prediction tracing used. The purpose of this study is to compare soft tissue prediction tracing used with postoperative tracing and to find intervening modifying factor via serial tracing. Review of 30 prediction tracing showed that the most important factor contributing to prodiction tracing inaccuracy was the skeletal and dental relapse. And, some factors which may be responsible for prediction tracing inaccuracy were discussed.
Background: Scapular winging (SW) could be caused by tightness or weakness of the periscapular muscles. Although data mining techniques are useful in classifying or predicting risk of musculoskeletal disorder, predictive models for risk of musculoskeletal disorder using the results of clinical test or quantitative data are scarce. Objects: This study aimed to (1) investigate the difference between young women with and without SW, (2) establish a predictive model for presence of SW, and (3) determine the cutoff value of each variable for predicting the risk of SW using the decision tree method. Methods: Fifty young female subjects participated in this study. To classify the presence of SW as the outcome variable, scapular protractor strength, elbow flexor strength, shoulder internal rotation, and whether the scapula is in the dominant or nondominant side were determined. Results: The classification tree selected scapular protractor strength, shoulder internal rotation range of motion, and whether the scapula is in the dominant or nondominant side as predictor variables. The classification tree model correctly classified 78.79% (p = 0.02) of the training data set. The accuracy obtained by the classification tree on the test data set was 82.35% (p = 0.04). Conclusion: The classification tree showed acceptable accuracy (82.35%) and high specificity (95.65%) but low sensitivity (54.55%). Based on the predictive model in this study, we suggested that 20% of body weight in scapular protractor strength is a meaningful cutoff value for presence of SW.
Transactions of the Korean Society of Mechanical Engineers A
/
v.34
no.10
/
pp.1345-1350
/
2010
Sit-to-stand movement is a basic movement in daily activities. On the basis of this movement, the biomechanical functions of a person can be evaluated. The study of the joint kinematics, moment, and muscle coordination is necessary to understand the characteristics of the sit-to-stand movement. We have developed a motion-based program for inverse dynamics analysis and the electromyogram-based program for muscle force prediction. The joint kinematics and the kinetic results estimated on the basis of obtained motion data, ground reaction force, and electromyogram signals were compared with those reported in previous studies, and the muscle forces determined by the two methods were compared with each other. The methods and programs developed in this study can be used to understand biomechanics and muscle coordination involved in basic movements in daily activities.
Kim, Young Su;Jeong, Woo Seob;Lee, Sung Yun;Seok, Tae-Ryong
Journal of Korean Tunnelling and Underground Space Association
/
v.8
no.1
/
pp.21-30
/
2006
In case of an urban tunnel, the displacement of ground base controls the tunnel design because it is built on shallow and unconsolidated ground many times. There are more insufficiency to describe the ground movement which coincides in the measured result of the situ because the design of an urban tunnel is dependent on the method of numerical analysis used to the existing elastic and elasto-plastic models. We studied about the predict ion for the ground movement of a shallow tunnel in unconsolidated ground, mechanism of collapse, and settlement. Also this paper shows comparison with the existing elastic and elasto-plastic model using the unlinear analysis of the strain-softening model. We can model the real ground movement as the increasement of ground surface inclination or occurrence of shear band by using strain-softening model for the result of ground movement of an urban NATM tunnel.
This research centers on the Taiwan Eye-Movement Corpus of Spanish (TECS), a specially created corpus comprising eye-tracking data from Chinese-speaking learners of Spanish as a third language in Taiwan. Its primary purpose is to explore the broad utility of TECS in understanding language learning processes, particularly the initial stages of language learning. Constructing this corpus involves gathering data on eye-tracking, reading comprehension, and language proficiency to develop a machine-learning model that predicts learner behaviors, and subsequently undergoes a predictability test for validation. The focus is on examining attention in input processing and their relationship to language learning outcomes. The TECS eye-tracking data consists of indicators derived from eye movement recordings while reading Spanish sentences with temporal references. These indicators are obtained from eye movement experiments focusing on tense verbal inflections and temporal adverbs. Chinese expresses tense using aspect markers, lexical references, and contextual cues, differing significantly from inflectional languages like Spanish. Chinese-speaking learners of Spanish face particular challenges in learning verbal morphology and tenses. The data from eye movement experiments were structured into feature vectors, with learner behaviors serving as class labels. After categorizing the collected data, we used two types of machine learning methods for classification and regression: Random Forests and the k-nearest neighbors algorithm (KNN). By leveraging these algorithms, we predicted learner behaviors and conducted performance evaluations to enhance our understanding of the nexus between learner behaviors and language learning process. Future research may further enrich TECS by gathering data from subsequent eye-movement experiments, specifically targeting various Spanish tenses and temporal lexical references during text reading. These endeavors promise to broaden and refine the corpus, advancing our understanding of language processing.
A computation was made to predict the movement of the thrust center position due to the rocket nozzle deflection. Three dimensional computations were done for the nozzle deflection angles of 0/1/3 degrees, and the oscillation of aerodynamic coefficients, not observed for the axisymmetric cases, was encountered. The position of the thrust center was found to be at -16 mm and -4 mm for the deflection angles of 1 and 3 degrees, respectively, and it can be concluded that the thrust center movement due to nozzle deflection is negligible. In addition to the computational results, the mechanism of thrust generation in a rocket engine is described with a brief mathematical derivation as it is sometimes mistaken. Also presented are some descriptions on the problem of pressure center definition for symmetric cases such as a rocket external flow problem and the nozzle deflection case.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.