• Title/Summary/Keyword: movement prediction

Search Result 407, Processing Time 0.038 seconds

A Study on Spatial Differences in PM2.5 Concentrations According to Synoptic Meteorological Distribution (종관 기상 분포에 따른 PM2.5 농도의 공간적 차이에 관한 연구)

  • Da Eun Chae;Soon-Hwan Lee
    • Journal of Environmental Science International
    • /
    • v.31 no.12
    • /
    • pp.999-1012
    • /
    • 2022
  • To investigate the reason for the spatial difference in PM2.5 (Particulate Matter, < 2.5 ㎛) concentration despite a similar synoptic pattern, a synoptic analysis was performed. The data used for this study were the daily average PM2.5 concentration and meteorological data observed from 2016 to 2020 in Busan and Seoul metropolitan areas. Synoptic pressure patterns associated with high PM2.5 concentration episodes (greater than 35 ㎍/m3) were analyzed using K-means cluster analysis, based on the 900 hPa geopotential height of NCEP (National Centers for Environmental Prediction) FNL (Final analysis) data. The analysis identified three sub-groups related to high concentrations occurring only in Busan and Seoul metropolitan areas. Although the synoptic patterns of high PM2.5 concentration episodes that occur independently in Busan and Seoul metropolitan areas were similar, there was a difference in the intensity of pressure gradient and its direction, which tends to be an important factor determining the movement time of pollutants. The spatial difference in PM2.5 concentration in the Korean Peninsula is due to the difference and direction of the atmospheric pressure gradient that develops from southwest to northeast direction.

Prediction Method for Thermal Destruction of Internal Insulator in Solid Rocket Motor (고체추진기관 연소관단열재의 열파괴 예측기법)

  • Ji-Yeul Bae;In Sik Hwang;Yoongoo Kang
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.27 no.1
    • /
    • pp.9-16
    • /
    • 2023
  • This paper investigated the method to predict a thermal response of internal insulation in a solid rocket motor considering both thermal decomposition and ablation. Changes in properties due to the thermal decomposition, swelling of char layer and movement of decomposition gases inside the material were considered during a modeling. And radiative/convective heat flux from the exhaust gas were applied as boundary conditions, while the chemical ablation of the material surface is modeled with algebraic equations. Test SRM with thermocouples was solved for a validation purpose. The results showed that predicted temperatures have identical trends and values compared to the experimental values. And an error of predicted thermal destruction depth was around 0.1 mm.

Forecasting the Occurrence of Voice Phishing using the ARIMA Model (ARIMA 모형을 이용한 보이스피싱 발생 추이 예측)

  • Jung-Ho Choo;Yong-Hwi Joo;Jung-Ho Eom
    • Convergence Security Journal
    • /
    • v.22 no.3
    • /
    • pp.79-86
    • /
    • 2022
  • Voice phishing is a cyber crime in which fake financial institutions, the Public Prosecutor's Office, and the National Police Agency are impersonated to find out an individual's Certification number and credit card number or withdraw a deposit. Recently, voice phishing has been carried out in a subtle and secret way. Analyzing the trend of voice phishing that occurred in '18~'21, it was found that there is a seasonality that occurs rapidly at a time when the movement of money is intensifying in the trend of voice phishing, giving ambiguity to time series analysis. In this research, we adjusted seasonality using the X-12 seasonality adjustment methodology for accurate prediction of voice phishing occurrence trends, and predicted the occurrence of voice phishing in 2022 using the ARIMA model.

The forecasting evaluation of the high-order mixed frequency time series model to the marine industry (고차원 혼합주기 시계열모형의 해운경기변동 예측력 검정)

  • KIM, Hyun-sok
    • The Journal of shipping and logistics
    • /
    • v.35 no.1
    • /
    • pp.93-109
    • /
    • 2019
  • This study applied the statistically significant factors to the short-run model in the existing nonlinear long-run equilibrium relation analysis for the forecasting of maritime economy using the mixed cycle model. The most common univariate AR(1) model and out-of-sample forecasting are compared with the root mean squared forecasting error from the mixed-frequency model, and the prediction power of the mixed-frequency approach is confirmed to be better than the AR(1) model. The empirical results from the analysis suggest that the new approach of high-level mixed frequency model is a useful for forecasting marine industry. It is consistent that the inclusion of more information, such as higher frequency, in the analysis of long-run equilibrium framework is likely to improve the forecasting power of short-run models in multivariate time series analysis.

Predicting Learning Achievements with Indicators of Perceived Affordances Based on Different Levels of Content Complexity in Video-based Learning

  • Dasom KIM;Gyeoun JEONG
    • Educational Technology International
    • /
    • v.25 no.1
    • /
    • pp.27-65
    • /
    • 2024
  • The purpose of this study was to identify differences in learning patterns according to content complexity in video-based learning environments and to derive variables that have an important effect on learning achievement within particular learning contexts. To achieve our aims, we observed and collected data on learners' cognitive processes through perceived affordances, using behavioral logs and eye movements as specific indicators. These two types of reaction data were collected from 67 male and female university students who watched two learning videos classified according to their task complexity through the video learning player. The results showed that when the content complexity level was low, learners tended to navigate using other learners' digital logs, but when it was high, students tended to control the learning process and directly generate their own logs. In addition, using derived prediction models according to the degree of content complexity level, we identified the important variables influencing learning achievement in the low content complexity group as those related to video playback and annotation. In comparison, in the high content complexity group, the important variables were related to active navigation of the learning video. This study tried not only to apply the novel variables in the field of educational technology, but also attempt to provide qualitative observations on the learning process based on a quantitative approach.

A Study on Motion Estimation Encoder Supporting Variable Block Size for H.264/AVC (H.264/AVC용 가변 블록 크기를 지원하는 움직임 추정 부호기의 연구)

  • Kim, Won-Sam;Sohn, Seung-Il
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.12 no.10
    • /
    • pp.1845-1852
    • /
    • 2008
  • The key elements of inter prediction are motion estimation(ME) and motion compensation(MC). Motion estimation is to find the optimum motion vectors, not only by using a distance criteria like the SAD, but also by taking into account the resulting number of 비트s in the 비트 stream. Motion compensation is compensate for movement of blocks of current frame. Inter-prediction Encoding is always the main bottleneck in high-quality streaming applications. Therefore, in real-time streaming applications, dedicated hardware for executing Inter-prediction is required. In this paper, we studied a motion estimator(ME) for H.264/AVC. The designed motion estimator is based on 2-D systolic array and it connects processing elements for fast SAD(Sum of Absolute Difference) calculation in parallel. By providing different path for the upper and lower lesion of each reference data and adjusting the input sequence, consecutive calculation for motion estimation is executed without pipeline stall. With data reuse technique, it reduces memory access, and there is no extra delay for finding optimal partitions and motion vectors. The motion estimator supports variable-block size and takes 328 cycles for macro-block calculation. The proposed architecture is local memory-free different from paper [6] using local memory. This motion estimation encoder can be applicable to real-time video processing.

Ground Subsidence Risk Grade Prediction Model Based on Machine Learning According to the Underground Facility Properties and Density (기계학습 기반 지하매설물 속성 및 밀집도를 활용한 지반함몰 위험도 예측 모델)

  • Sungyeol Lee;Jaemo Kang;Jinyoung Kim
    • Journal of the Korean GEO-environmental Society
    • /
    • v.24 no.4
    • /
    • pp.23-29
    • /
    • 2023
  • Ground subsidence shows a mechanism in which the upper ground collapses due to the formation of a cavity due to the movement of soil particles in the ground due to the formation of a waterway because of damage to the water supply/sewer pipes. As a result, cavity is created in the ground and the upper ground is collapsing. Therefore, ground subsidence frequently occurs mainly in downtown areas where a large amount of underground facilities are buried. Accordingly, research to predict the risk of ground subsidence is continuously being conducted. This study tried to present a ground subsidence risk prediction model for two districts of ○○ city. After constructing a data set and performing preprocessing, using the property data of underground facilities in the target area (year of service, pipe diameter), density of underground facilities, and ground subsidence history data. By applying the dataset to the machine learning model, it is evaluated the reliability of the selected model and the importance of the influencing factors used in predicting the ground subsidence risk derived from the model is presented.

Respiratory signal analysis of liver cancer patients with respiratory-gated radiation therapy (간암 호흡동조 방사선치료 환자의 호흡신호분석)

  • Kang, dong im;Jung, sang hoon;Kim, chul jong;Park, hee chul;Choi, byung ki
    • The Journal of Korean Society for Radiation Therapy
    • /
    • v.27 no.1
    • /
    • pp.23-30
    • /
    • 2015
  • Purpose : External markers respiratory movement measuring device (RPM; Real-time Position Management, Varian Medical System, USA) Liver Cancer Radiation Therapy Respiratory gated with respiratory signal with irradiation time and the actual research by analyzing the respiratory phase with the breathing motion measurement device respiratory tuning evaluate the accuracy of radiation therapy Materials and Methods : May-September 2014 Novalis Tx. (Varian Medical System, USA) and liver cancer radiotherapy using respiratory gated RPM (Duty Cycle 20%, Gating window 40% ~ 60%) of 16 patients who underwent total when recording the analyzed respiratory movement. After the breathing motion of the external markers recorded on the RPM was reconstructed by breathing through the acts phase analysis, for Beam-on Time and Duty Cycle recorded by using the reconstructed phase breathing breathing with RPM gated the prediction accuracy of the radiation treatment analysis and analyzed the correlation between prediction accuracy and Duty Cycle in accordance with the reproducibility of the respiratory movement. Results : Treatment of 16 patients with respiratory cycle during the actual treatment plan was analyzed with an average difference -0.03 seconds (range -0.50 seconds to 0.09 seconds) could not be confirmed statistically significant difference between the two breathing (p = 0.472). The average respiratory period when treatment is 4.02 sec (${\pm}0.71sec$), the average value of the respiratory cycle of the treatment was characterized by a standard deviation 7.43% (range 2.57 to 19.20%). Duty Cycle is that the actual average 16.05% (range 13.78 to 17.41%), average 56.05 got through the acts of the show and then analyzed% (range 39.23 to 75.10%) is planned in respiratory research phase (40% to 60%) in was confirmed. The investigation on the correlation between the ratio Duty Cycle and planned respiratory phase and the standard deviation of the respiratory cycle was analyzed in each -0.156 (p = 0.282) and -0.385 (p = 0.070). Conclusion : This study is to analyze the acts after the breathing motion of the external markers recorded during the actual treatment was confirmed in a reproducible ratios of actual treatment of breathing motion during treatment, and Duty Cycle, planned respiratory gated window. Minimizing an error of the treatment plan using 4DCT and enhance the respiratory training and respiratory signal monitoring for effective treatment it is determined to be necessary.

  • PDF

Animal Infectious Diseases Prevention through Big Data and Deep Learning (빅데이터와 딥러닝을 활용한 동물 감염병 확산 차단)

  • Kim, Sung Hyun;Choi, Joon Ki;Kim, Jae Seok;Jang, Ah Reum;Lee, Jae Ho;Cha, Kyung Jin;Lee, Sang Won
    • Journal of Intelligence and Information Systems
    • /
    • v.24 no.4
    • /
    • pp.137-154
    • /
    • 2018
  • Animal infectious diseases, such as avian influenza and foot and mouth disease, occur almost every year and cause huge economic and social damage to the country. In order to prevent this, the anti-quarantine authorities have tried various human and material endeavors, but the infectious diseases have continued to occur. Avian influenza is known to be developed in 1878 and it rose as a national issue due to its high lethality. Food and mouth disease is considered as most critical animal infectious disease internationally. In a nation where this disease has not been spread, food and mouth disease is recognized as economic disease or political disease because it restricts international trade by making it complex to import processed and non-processed live stock, and also quarantine is costly. In a society where whole nation is connected by zone of life, there is no way to prevent the spread of infectious disease fully. Hence, there is a need to be aware of occurrence of the disease and to take action before it is distributed. Epidemiological investigation on definite diagnosis target is implemented and measures are taken to prevent the spread of disease according to the investigation results, simultaneously with the confirmation of both human infectious disease and animal infectious disease. The foundation of epidemiological investigation is figuring out to where one has been, and whom he or she has met. In a data perspective, this can be defined as an action taken to predict the cause of disease outbreak, outbreak location, and future infection, by collecting and analyzing geographic data and relation data. Recently, an attempt has been made to develop a prediction model of infectious disease by using Big Data and deep learning technology, but there is no active research on model building studies and case reports. KT and the Ministry of Science and ICT have been carrying out big data projects since 2014 as part of national R &D projects to analyze and predict the route of livestock related vehicles. To prevent animal infectious diseases, the researchers first developed a prediction model based on a regression analysis using vehicle movement data. After that, more accurate prediction model was constructed using machine learning algorithms such as Logistic Regression, Lasso, Support Vector Machine and Random Forest. In particular, the prediction model for 2017 added the risk of diffusion to the facilities, and the performance of the model was improved by considering the hyper-parameters of the modeling in various ways. Confusion Matrix and ROC Curve show that the model constructed in 2017 is superior to the machine learning model. The difference between the2016 model and the 2017 model is that visiting information on facilities such as feed factory and slaughter house, and information on bird livestock, which was limited to chicken and duck but now expanded to goose and quail, has been used for analysis in the later model. In addition, an explanation of the results was added to help the authorities in making decisions and to establish a basis for persuading stakeholders in 2017. This study reports an animal infectious disease prevention system which is constructed on the basis of hazardous vehicle movement, farm and environment Big Data. The significance of this study is that it describes the evolution process of the prediction model using Big Data which is used in the field and the model is expected to be more complete if the form of viruses is put into consideration. This will contribute to data utilization and analysis model development in related field. In addition, we expect that the system constructed in this study will provide more preventive and effective prevention.

A Study on Foreign Exchange Rate Prediction Based on KTB, IRS and CCS Rates: Empirical Evidence from the Use of Artificial Intelligence (국고채, 금리 스왑 그리고 통화 스왑 가격에 기반한 외환시장 환율예측 연구: 인공지능 활용의 실증적 증거)

  • Lim, Hyun Wook;Jeong, Seung Hwan;Lee, Hee Soo;Oh, Kyong Joo
    • Knowledge Management Research
    • /
    • v.22 no.4
    • /
    • pp.71-85
    • /
    • 2021
  • The purpose of this study is to find out which artificial intelligence methodology is most suitable for creating a foreign exchange rate prediction model using the indicators of bond market and interest rate market. KTBs and MSBs, which are representative products of the Korea bond market, are sold on a large scale when a risk aversion occurs, and in such cases, the USD/KRW exchange rate often rises. When USD liquidity problems occur in the onshore Korean market, the KRW Cross-Currency Swap price in the interest rate market falls, then it plays as a signal to buy USD/KRW in the foreign exchange market. Considering that the price and movement of products traded in the bond market and interest rate market directly or indirectly affect the foreign exchange market, it may be regarded that there is a close and complementary relationship among the three markets. There have been studies that reveal the relationship and correlation between the bond market, interest rate market, and foreign exchange market, but many exchange rate prediction studies in the past have mainly focused on studies based on macroeconomic indicators such as GDP, current account surplus/deficit, and inflation while active research to predict the exchange rate of the foreign exchange market using artificial intelligence based on the bond market and interest rate market indicators has not been conducted yet. This study uses the bond market and interest rate market indicator, runs artificial neural network suitable for nonlinear data analysis, logistic regression suitable for linear data analysis, and decision tree suitable for nonlinear & linear data analysis, and proves that the artificial neural network is the most suitable methodology for predicting the foreign exchange rates which are nonlinear and times series data. Beyond revealing the simple correlation between the bond market, interest rate market, and foreign exchange market, capturing the trading signals between the three markets to reveal the active correlation and prove the mutual organic movement is not only to provide foreign exchange market traders with a new trading model but also to be expected to contribute to increasing the efficiency and the knowledge management of the entire financial market.