DOI QR코드

DOI QR Code

Prediction Method for Thermal Destruction of Internal Insulator in Solid Rocket Motor

고체추진기관 연소관단열재의 열파괴 예측기법

  • Ji-Yeul Bae (1st R&D Institute, Agency for Defense Development) ;
  • In Sik Hwang (1st R&D Institute, Agency for Defense Development) ;
  • Yoongoo Kang (1st R&D Institute, Agency for Defense Development)
  • Received : 2022.11.22
  • Accepted : 2022.12.15
  • Published : 2023.02.28

Abstract

This paper investigated the method to predict a thermal response of internal insulation in a solid rocket motor considering both thermal decomposition and ablation. Changes in properties due to the thermal decomposition, swelling of char layer and movement of decomposition gases inside the material were considered during a modeling. And radiative/convective heat flux from the exhaust gas were applied as boundary conditions, while the chemical ablation of the material surface is modeled with algebraic equations. Test SRM with thermocouples was solved for a validation purpose. The results showed that predicted temperatures have identical trends and values compared to the experimental values. And an error of predicted thermal destruction depth was around 0.1 mm.

본 연구에서는 고체추진기관 내 연소관단열재의 열분해와 삭마를 고려하여 단열재의 열응답을 예측할 수 있는 일차원 해석기법을 개발하였다. 모델링에는 연소관단열재 내부에서 발생하는 열분해로 인한 물성변화, 숯층의 팽창 및 분해가스 이동을 고려하였다. 또한 연소가스로부터의 복사/대류 열유속을 경계조건으로 적용하였으며 단열재 표면에서 발생하는 화학적 삭마속도를 대수식으로 모델링하였다. 해석기법 검증을 위해 열전대가 설치된 시험모터에 대한 해석을 수행하였다. 해석으로 도출된 온도분포는 시험과 유사한 값을 나타냈으며 시험과 예측 열파괴두께의 오차는 0.1 mm 내외였다.

Keywords

References

  1. Twichell, S.E. and R.B. Keller Jr., "Solid Rocket Motor Internal Insulation," NASA SP-8093, 1976.
  2. Natali, Maurizio, Jose Maria Kenny and Luigi Torre, "Science and Technology of Polymeric Ablative Materials for Thermal Protection Systems and Propulsion Devices: A review," Prog. Mater. Sci., Vol. 84, pp. 192-275, 2016. https://doi.org/10.1016/j.pmatsci.2016.08.003
  3. Rindal, R., Flood, D. and Kendall, R., "Analytical and Experimental Study of Ablation Material for Rocket Engine Application," NASA CR-54757, 15, 1966.
  4. Bae, J.Y., Kim, T.H., Kim, J.H., Ham, H.C. and Cho, H.H., "Conjugate Simulation of Heat Transfer and Ablation in a Small Rocket Nozzle," J. Comput. Struct. Eng., Vol. 30, No. 2, pp. 119-125, 2017. https://doi.org/10.7734/COSEIK.2017.30.2.119
  5. Brewer, William D., "Graphite and Ablative Material Response to CO2-Laser, Carbon-Arc, and Xenon-Arc Radiation," NASA, Washington, D.C., 1976.
  6. Koo, J., Lin, S., Kneer, M. and Miller, M., "Comparison of Ablative Materials in a Simulated Solid Rocket Exhaust Environment," AIAA 32nd Structures, Structural Dynamics, and Materials Conference, Baltimore, MD, U.S.A., p. 978, 1991.
  7. Russell, Gerald W. and Forrest Strobel, "Modeling Approach for Intumescing Charring Heatshield Materials," Journal of Spacecraft and Rockets, Vol. 43, No. 4, pp. 739-749, 2006. https://doi.org/10.2514/1.15153
  8. Jiang Li, Kun Xi, Xiang Lv, Qiang Li and Shu-xian Wang, "Characteristics and Formation Mechanism of Compact/Porous Structures in Char Layers of EPDM Insulation Materials," Carbon, Vol. 127, pp. 498-509, 2018. https://doi.org/10.1016/j.carbon.2017.10.091
  9. Kang, Y.G. and Park, J.H., "A Comparison with Thermal Reaction Characteristic of Kevlar/EPDM Internal Insulator by Change of Chamber Pressure," Journal of the Korean Society of Propulsion Engineers, Vol. 20, No. 3, pp. 71-77, 2016. https://doi.org/10.6108/KSPE.2016.20.3.071
  10. Boyarintsev, V.I. and Zvyagin, Y., "The Ablation of Graphite in the Turbulent Flow of a Reacting Gas," WRIGHT-PATTERSON AFB OHIO No. FTD-MT-24-1754-71, 1972.
  11. Blaine E. Pearce, "Radiative Heat Transfer within a Solid-Propellant Rocket Motor," Journal of Spacecraft and Rockets, Vol. 15, No. 2, pp. 125-128, 1978. https://doi.org/10.2514/3.28003
  12. D.R. Bartz, "Turbulent Boundary-Lyer Heat Transfer from Rapidly Accelerating Flow of Rocket Combustion Gases and of Heated Air," Jet Propulsion Laboratory Tech. Rep. NASA-CR-62615, California, 1963.
  13. McBride, Bonnie J., "Computer Program for Calculation of Complex Chemical Equilibrium Compositions and Applications," NASA Lewis Research Center, 1996.