• 제목/요약/키워드: movable bed analysis

검색결과 13건 처리시간 0.028초

The Movable Hydraulic Model Test for Exchange of Intake Weir in the Nakdong River (낙동강 취수보개체를 위한 이동상 수리모형실험)

  • 김성원
    • Journal of Environmental Science International
    • /
    • 제9권1호
    • /
    • pp.35-42
    • /
    • 2000
  • In this study, the movable bed model testing was carried out so as to analyze bed profile changes including predicting scouring and deposition of bed profile and to solve hydraulic problems affecting with bed and both-bank between upstream and downstream of intake weir in the Nakdong river channel. The movable bed model testing consists of fundamental test, movable model test and numerical analysis method respectively. The fundamental test was enforced to analyze relationship of discharge and sediment load in the tilting flume. When the movable model test was worked, it was shown that sediment budget between input sediment load and output sediment load was balanced exactly. As a result of movable model test, it was presented that scouring and deposition changes in quantities between the upstream and downstream of modification weir were less than those of nature and planning weir. Finally, numerical analysis method was operated by 1-dimensional bed profile changes model ; HEC-6 model so as to complement unsolving hard problems during movable model test. So, modification weir will sustained the stable bed profile changes than any other weirs in the study channel.

  • PDF

Numerical Analysis of Dam-break Waves in an L-shaped Channel with a Movable Bed (L자형 이동상수로에서 댐 붕괴파의 수치해석)

  • Kim, Dae-Geun;Hwang, Gun
    • Journal of Korea Water Resources Association
    • /
    • 제45권3호
    • /
    • pp.291-300
    • /
    • 2012
  • We conducted a three-dimensional numerical simulation by using the FLOW-3D, with RANS as the governing equation, in an effort to track the dam-break wave.immediately after a dam break.in areas surrounding where the dam break took place as well as the bed change caused by the dam-break wave. In particular, we computed the bed change in the movable bed and compared the variation in flood wave induced by the bed change with our analysis results in the fixed bed. The analysis results can be summarized as follows: First, the analysis results on the flood wave in the L-shaped channel and on the flood wave and bed change in the movable-bed channel successfully reproduce the findings of the hydraulic experiment. Second, the concentration of suspended sediment is the highest in the front of the flood wave, and the greatest bed change is observed in the direct downstream of the dam where the water flow changes tremendously. Generated in the upstream of the channel, suspended sediment results in erosion and sedimentation alternately in the downstream region. With the arrival of the flood wave, erosion initially prove predominant in the inner side of the L-shaped bend, but over time, it tends to move gradually toward the outer side of the bend. Third, the flood wave in the L-shaped channel with a movable bed propagates at a slower pace than that in the fixed bed due to the erosion and sedimentation of the bed, leading to a remarkable increase in flood water level.

Three-dimensional Numerical Analysis of Dam-break Waves on a Fixed and Movable Bed (고정상 및 이동상 수로에서 댐 붕괴파의 3차원 수치해석)

  • Kim, Dae Geun;Hwang, Gun
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • 제31권4B호
    • /
    • pp.333-341
    • /
    • 2011
  • This study analyzed the propagation of dam-break waves in an area directly downstream of a dam by using 3D numerical modeling with RANS as the governing equation. In this area, the flow of the waves has three dimensional characteristics due to the instantaneous dam break. In particular, the dam-break flows are characterized by a highly unsteady and discontinuous flow, a mixture of the sharp flood waves and their reflected waves, a mixture of subcritical and supercritical flow, and propagation in a dry and movable bed. 2D numerical modeling, in which the governing equation is the shallow water equation, was regarded as restricted in terms of dealing with the sharp fluctuation of the water level at the dam-breaking point and water level vibration at the reservoir. However, in this 30 analysis of flood wave propagation due to partial dam breaking and dam-break in channels with $90^{\circ}$ bend, those phenomena were properly simulated. In addition, the flood wave and bed profiles in a movable bed with a flat/upward/downward bed step, which represents channel aggradation or degradation, was also successfully simulated.

Shoreline Changes due to the Construction of Offshore Structure and its Numerical Calculation (이안 구조물 건설에 따른 해안선의 변화와 수치계산)

  • 신승호
    • Journal of Korean Port Research
    • /
    • 제15권1호
    • /
    • pp.47-56
    • /
    • 2001
  • A numerical model for practical use based on the 1-line theory is presented to simulate shoreline changes due to construction of offshore structures. The shoreline change model calculates the longshore sediment transport rate using breaking waves. Before the shoreline change model execution, a wave model, adopting the modified Boussinesq equation including the breaking parameters and bottom friction term, was used to provide the longshore distribution of the breaking waves. The contents of present model are outlined first. Then to examine the characteristics of this model, the effects of the parameters contained in this model are clarified through the calculations of shoreline changes for simple cases. Finally, as the guides for practical application of this model, several comments are made on the parameters used in the model, such as transport parameter, average beach slope, breaking height variation alongshore, depth of closure, etc. with the presentation of typical examples of 3-dimensional movable bed experimental results for application of this model. Here, beach change behind the offshore structures is represented by the movement of the shoreline position. Analysis gives that the transport parameters should be taken as site specific parameters in terms of time scale for the shoreline change and adjusted to achieve the best agreement between the calculated and the observed near the structures.

  • PDF

An Analysis of the Flow and Bed Topography Characteristics of Curved Channels with Numerical Model (수치모형에 의한 만곡수로의 흐름 및 하상 특성 분석)

  • Jeong, Jae-Uk;Han, Jeong-Seok;Yun, Se-Ui
    • Journal of Korea Water Resources Association
    • /
    • 제33권1호
    • /
    • pp.111-121
    • /
    • 2000
  • A numerical model which can analyze the flow and bed topography characteristics of a single bend and continuous one was suggested using the equations of mass, momentum, the vertical distribution of secondary flow, and the transverse bed slope. The calculated flow and bed topography characteristic values were compared with the experimental data in a single bend, and the predicted path of maximum streamwise velocity in continuous bends also compared with the Vadnal and Chang's data. The comparisons gave good results. A curved channel with 180 degrees was used. Sand and anthracite were selected as bed materials in the movable bed experiments. The model application of this model to the sand bed and the anthracite one accorded well with the observed values in the experiments. This model was proved to be useful for predicting the flow and bed topography with the change of bed materials. The results of this research could be used to construct and control curved channels as a fundamental information.mation.

  • PDF

Numerical analysis on erosion process of replenished sediment on rock bed

  • Takebayashi, Hiroshi;Yoshiiku, Musashi;Shiuchi, Makoto;Yamashita, Masahiro;Nakata, Yasusuke
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 한국수자원학회 2011년도 학술발표회
    • /
    • pp.17-17
    • /
    • 2011
  • As a method of countermeasure to bed degradation and armoring phenomena of bed material in the downstream area of dam reservoirs, sediment augmentation (replenished sediment) has been carried out in many Japanese rivers. In general, bed of the replenished sediment site is composed of rocks, because the site is located in the downstream area of the dams and sediment supply is very small. Bed deformation process has been researched by many researchers. As a method of countermeasure to bed degradation and armoring phenomena of bed material in the downstream area of dam reservoirs, sediment augmentation (replenished sediment) has been carried out in many Japanese rivers. In general, bed of the replenished sediment site is composed of rocks, because the site is located in the downstream area of the dams and sediment supply is very small. Bed deformation process has been researched by many researchers. However, most of them can treat movable bed only and cannot be applied to the bed deformation process of sediment on rocks. If the friction angle between the sediment and the bed surface is assumed to be the same as the friction angle between the sediment and the sediment, sediment transport rate must be smaller without sediment deposition layer on the rocks. As a result, the reproduced bed geometry is affected very well. In this study, non-equilibrium transport process of non-cohesive sediment on rigid bed is introduced into the horizontal two dimensional bed deformation model and the model is applied to the erosion process of replenished sediment on rock in the Nakagawa, Japan. Here, the Japanese largest scale sediment augmentation has been performed in the Nakagawa. The results show that the amounts of the eroded sediment and the remained sediment reproduced by the developed numerical model are $56300m^3$ and $26800m^3$, respectively. On the other hand, the amounts of the eroded sediment and the remained sediment measured in the field after the floods are $56600m^3$ and $26500m^3$, respectively. The difference between the model and field data is very small. Furthermore, the bed geometry of the replenished sediment after the floods reproduced by the developed model has a good agreement with the measured bed geometry after the floods. These results indicate that the developed model is able to simulate the erosion process of replenished sediment on rocks very well. Furthermore, the erosion speed of the replenished sediment during the decreasing process of the water discharge is faster than that during the increasing process of the water discharge. The replenished sediment is eroded well, when the top of the replenished sediment is covered by the water. In general, water surface level is kept to be high during the decreasing process of the discharge during floods, because water surface level at the downstream end is high. Hence, it is considered that the high water surface level during the decreasing process of the water discharge affects on the fast erosion of the replenished sediment.

  • PDF

Analysis of Flow and Bed Changes by Hydraulic Structure using CCHE2D: Focusing on Gangjeong-Goryeong Weir (수리구조물에 의한 흐름 및 하상변동 연구- 강정고령보를 중심으로 -)

  • Ahn, Jung-Min;Jung, Kang-Young;Shin, Dongseok;Lyu, Siwan
    • Journal of Wetlands Research
    • /
    • 제19권2호
    • /
    • pp.181-192
    • /
    • 2017
  • Analysis using a numerical model is important to understand the sediment transport mechanism associated with erosion and sedimentation near weirs and other hydraulic structures within riverine systems. The local riverbed change near a hydraulic structure (Gangjeong-Goryong multi-function weir in the Nakdong river) was analyzed in order to examine the effect of hydraulic structures on local bed change. A 2D numerical model (CCHE-2D) was employed to simulate the sedimentation and erosion over a reach (25 km) including the weir. For the calibration and verification of the model, rainfall data from a real event (Typoon 'Ewiniar' in 2006) were used for flow and stage simulation. And the simulated results show a good agreement with the observed data for the whole domain. From the result, it was found that the installation and operation of the weir could aggravate bed changes by typhoon between movable weirs, and which resulted in redistribution of sediment.

EMERGY Analysis of Nakdong River Basin for Sustainable Use (낙동가 유역의 지속가능한 이용을 위한 EMERGY 분석)

  • 김진이;손지호;김영진;이석모
    • Journal of Environmental Science International
    • /
    • 제9권1호
    • /
    • pp.49-55
    • /
    • 2000
  • An EMERGY analysis of the main energy flows driving the economy of humans and life support systems consists of environmental energies, fuels, and imports, all expresses as solar emjoules. Total EMERGY use(720.0 E20 sej/yr) of the Nakdong River Basin is 96 per cent from imported sources, fuels and goods and services. EMERGY flows from the environment such as rain and geological uplift flux accounted for only 4 percent of total EMERGY use. Consequently, the ratio of outside investment to attracting natural resources was large, like other industrialized areas. EMERGY use per person in the Nakdong River Basin indicates a moderate EMERGY standard of living, even though the indigenous resources are very poor. Population of 6.66 million people in 1996 is already in excess of carrying capacity of the basin. Carrying capacity for steady state based on its renewable sources in only 0.226 million people. EMERGY yield ratio and environment loading ratio were 1.07 and 28.52, respectively. EMERGY sustainability index, a ratio of EMERGY yield ratio to environment loading ratio, is therefore less than one, which is indicative of highly developed consumer oriented economies. This study suggests that the economic structure of the Nakdong River Basin should be transformed from the present industrial structure to the social-economic structure based on an ecological-recycling concept for the sustainable use of the Nakdong River.

  • PDF

Experimental analysis of the sedimentation processes by variation of standing angle in the improved-pneumatic-movable weir (실내실험에 의한 가동보 기립각도 변화에 대한 토사의 퇴적 과정 분석)

  • Lee, Kyung Su;Jang, Chang-Lae
    • Journal of Korea Water Resources Association
    • /
    • 제51권9호
    • /
    • pp.795-802
    • /
    • 2018
  • This study investigates the hydraulic characteristics and the delta development processes in the improved-pneumatic-movable weir by considering the standing angle of the weir through laboratory experiments. The delta migration speed decreases rapidly with time. As the ratio of delta height to water depth increases, the dimensionless delta migration speed decreases at the delta point. Therefore, the water depth decreases as the delta height increases. Although the delta volume is large due to the effective height of the delta, the delta migration speed and sediment deposition decreases because of the backwater effect on the delta. On the same bed slope condition, the larger the weir height, the larger the delta volume and the ratio of delta height to delta front length is close to 1.0. The delta development could be suppressed when the weir is high. Therefore, the condition that the weir is high has the suppressing effect on the delta developments.

A Riverbed Change Prediction by River-Crossing Structure -Focused on the Major River Reaches of the Multifunctional Administrative City- (하천 횡단구조물에 의한 하상변동 예측 - 행정중심복합도시 주요 하천구간을 중심으로 -)

  • Yeon, Kyu-Sung;Jeong, Sang-Man;Yun, Chan-Young;Lee, Joo-Heon;Shin, Kwang-Seob
    • Journal of the Korean Society of Hazard Mitigation
    • /
    • 제9권1호
    • /
    • pp.107-113
    • /
    • 2009
  • This study has been conducted for the long-term riverbed change prediction on Geum River and Miho Stream surrounding the planned Multifunctional Administrative City and the neighboring regions by the construction of a small dam. Based on the analysis of vertical riverbed changes of the cross-sectional data for the years 1988, 2002 and 2007, minimum bed elevation significantly decreased in both Geum River and Miho Stream in 2007 as compared to 1988. Compared to 2002, however, a slight elevation change was observed. To make a long-term prediction on riverbed changes by the construction of a small dam, a one dimensional HEC-RAS 4.0 model has been used. By the fixed bed model test, the water levels were calibrated. By using the cross-sectional data of 1988 and 2002, verification was conducted under a movable bed model. According to the prediction of riverbed changes for each scenario with varying height of small dam, minor impact is expected around Miho Stream while major impact is expected around Geum River by 2017, as the small dam height increases. If the small dam is 7m-high, for example, it's been simulated that 1.59m deposition would be expected around the upper stream of Miho Stream Confluence while 1.98m scour would be expected around the downstream of the small dam.