• 제목/요약/키워드: mouse spleen

검색결과 478건 처리시간 0.028초

성유탕가감방(聖愈湯加減方)의 항염증(抗炎症) 및 항산화(抗酸化) (The Experimental Study on Anti-oxidant and Anti-inflammatory Effect of Sungyoutanggagambang(SYTG))

  • 김의일;유동열
    • 대한한방부인과학회지
    • /
    • 제21권4호
    • /
    • pp.69-89
    • /
    • 2008
  • Purpose: This study was performed to evaluate anti-oxidant activities and anti-inflammatory effects of Sungyoutanggagambang(SYTG). Methods: In the study of anti-oxidant activities. SYTG was investigated by DPPH radical scavenger activity. superoxide dismutase activity and superoxide anion radical scavenger activity. In the study of anti-inflammatory effects. SYTG was investigated using cultured cells and murine models. As for the parameters of inflammation. levels of several inflammatory cytokines and chemical mediators which are known to be related to inflammation were measured in mouse lung fibroblast cells(mLFCs) and RAW264.7 cells. Results: Prior to the experiment. we investigated the security of SYTG by measuring GOT and GPT in serum. 1. SYTG showed high antioxidant activity in a concentration-dependent degree by measured scavenging activity of DPPH free radical, superoxide dismutase and superoxide anion radical. 2. SYTG inhibited IL-1$\beta$, IL-6. TNF-$\alpha$, COX-2 and NOS-II mRNA expression as compared with the control group in a concentration-dependent degree in RAW264.7 cell line. 3. SYTG inhibited IL-1$\beta$, IL-6 production significantly at 100 ${\mu}g/ml$ and TNF-$\alpha$ production significantly at 50, 100 ${\mu}g/ml$ as compared with the control group in RA W264.7 cell line. 4. SYTG inhibited IL-1$\beta$, and IL-6 production significantly as compared with the control group in serum of acute inflammation-induced mice. and decreased IL-1$\beta$, IL-6 production in spleen tissue. and also decreased IL-1$\beta$, IL-6 production in liver tissue. Conclusion: These results suggest that SYTG can be useful in treating diverse female diseases caused by inflammation such as endometrosis, myoma, pelvic congestion. chronic cervicitis, chronic pelvic inflammatory disease and so on.

  • PDF

Protection of palmitic acid treatment in RAW264.7 cells and BALB/c mice during Brucella abortus 544 infection

  • Reyes, Alisha Wehdnesday Bernardo;Huy, Tran Xuan Ngoc;Vu, Son Hai;Kim, Hyun Jin;Lee, Jin Ju;Choi, Jeong Soo;Lee, John Hwa;Kim, Suk
    • Journal of Veterinary Science
    • /
    • 제22권2호
    • /
    • pp.18.1-18.12
    • /
    • 2021
  • Background: We previously elucidated the protective mechanism of Korean red ginseng oil (RGO) against Brucella abortus infection, and our phytochemical analysis revealed that palmitic acid (PA) was an abundant component of RGO. Consequently, we investigated the contribution of PA against B. abortus. Objectives: We aimed to investigate the efficacy of PA against B. abortus infection using a murine cell line and a murine model. Methods: Cell viability, bactericidal, internalization, and intracellular replication, western blot, nitric oxide (NO), and superoxide (O2-) analyses and flow cytometry were performed to determine the effects of PA on the progression of B. abortus infection in macrophages. Flow cytometry for cytokine analysis of serum samples and bacterial counts from the spleens were performed to determine the effect of PA in a mouse model. Results: PA did not affect the growth of B. abortus. PA treatment in macrophages did not change B. abortus uptake but it did attenuate the intracellular survivability of B. abortus. Incubation of cells with PA resulted in a modest increase in sirtuin 1 (SIRT1) expression. Compared to control cells, reduced nitrite accumulation, augmented O2-, and enhanced pro-inflammatory cytokine production were observed in PA-treated B. abortus-infected cells. Mice orally treated with PA displayed a decreased serum interleukin-10 level and enhanced bacterial resistance. Conclusions: Our results suggest that PA participates in the control of B. abortus within murine macrophages, and the in vivo study results confirm its efficacy against the infection. However, further investigations are encouraged to completely characterize the mechanisms involved in the inhibition of B. abortus infection by fatty acids.

Lysophosphatidylcholine Enhances Bactericidal Activity by Promoting Phagosome Maturation via the Activation of the NF-κB Pathway during Salmonella Infection in Mouse Macrophages

  • Lee, Hyo-Ji;Hong, Wan-Gi;Woo, Yunseo;Ahn, Jae-Hee;Ko, Hyun-Jeong;Kim, Hyeran;Moon, Sungjin;Hahn, Tae-Wook;Jung, Young Mee;Song, Dong-Keun;Jung, Yu-Jin
    • Molecules and Cells
    • /
    • 제43권12호
    • /
    • pp.989-1001
    • /
    • 2020
  • Salmonella enterica serovar Typhimurium (S. Typhimurium) is a facultative intracellular pathogen that causes salmonellosis and mortality worldwide. S. Typhimurium infects macrophages and survives within phagosomes by avoiding the phagosome-lysosome fusion system. Phagosomes sequentially acquire different Rab GTPases during maturation and eventually fuse with acidic lysosomes. Lysophosphatidylcholine (LPC) is a bioactive lipid that is associated with the generation of chemoattractants and reactive oxygen species (ROS). In our previous study, LPC controlled the intracellular growth of Mycobacterium tuberculosis by promoting phagosome maturation. In this study, to verify whether LPC enhances phagosome maturation and regulates the intracellular growth of S. Typhimurium, macrophages were infected with S. Typhimurium. LPC decreased the intracellular bacterial burden, but it did not induce cytotoxicity in S. Typhimurium-infected cells. In addition, combined administration of LPC and antibiotic significantly reduced the bacterial burden in the spleen and the liver. The ratios of the colocalization of intracellular S. Typhimurium with phagosome maturation markers, such as early endosome antigen 1 (EEA1) and lysosome-associated membrane protein 1 (LAMP-1), were significantly increased in LPC-treated cells. The expression level of cleaved cathepsin D was rapidly increased in LPC-treated cells during S. Typhimurium infection. Treatment with LPC enhanced ROS production, but it did not affect nitric oxide production in S. Typhimurium-infected cells. LPC also rapidly triggered the phosphorylation of IκBα during S. Typhimurium infection. These results suggest that LPC can improve phagosome maturation via ROS-induced activation of NF-κB pathway and thus may be developed as a therapeutic agent to control S. Typhimurium growth.

Free-Living Amoeba Vermamoeba vermiformis Induces Allergic Airway Inflammation

  • Lee, Da-In;Park, Sung Hee;Kang, Shin-Ae;Kim, Do Hyun;Kim, Sun Hyun;Song, So Yeon;Lee, Sang Eun;Yu, Hak Sun
    • Parasites, Hosts and Diseases
    • /
    • 제60권4호
    • /
    • pp.229-239
    • /
    • 2022
  • The high percentage of Vermamoeba was found in tap water in Korea. This study investigated whether Vermamoeba induced allergic airway inflammation in mice. We selected 2 free-living amoebas (FLAs) isolated from tap water, which included Korean FLA 5 (KFA5; Vermamoeba vermiformis) and 21 (an homolog of Acanthamoeba lugdunensis KA/E2). We axenically cultured KFA5 and KFA21. We applied approximately 1×106 to mice's nasal passages 6 times and investigated their pathogenicity. The airway resistance value was significantly increased after KFA5 and KFA21 treatments. The eosinophil recruitment and goblet cell hyperplasia were concomitantly observed in bronchial alveolar lavage (BAL) fluid and lung tissue in mice infected with KFA5 and KFA21. These infections also activated the Th2-related interleukin 25, thymic stromal lymphopoietin, and thymus and activation-regulated chemokines gene expression in mouse lung epithelial cells. The CD4+ interleukin 4+ cell population was increased in the lung, and the secretion of Th2-, Th17-, and Th1-associated cytokines were upregulated during KFA5 and KFA21 infection in the spleen, lung-draining lymph nodes, and BAL fluid. The pathogenicity (allergenicity) of KFA5 and KFA21 might not have drastically changed during the long-term in vitro culture. Our results suggested that Vermamoeba could elicit allergic airway inflammation and may be an airway allergen.

맥문동 물 추출물의 선천면역 활성과 염증억제 효과 (The Effects of Liriopis Tuber Water Extract on Innate Immune Activation and Anti-Inflammation)

  • 강누리;황덕상;이진무;이창훈;장준복
    • 대한한방부인과학회지
    • /
    • 제34권3호
    • /
    • pp.15-28
    • /
    • 2021
  • Objectives: This study was designed to examine the anti-cancer activity by innate immunomodulating and anti-inflammatory effects of liriopis tuber water extract (LPE). Methods: Cell cytotoxicity was tested with 4T1 mouse mammary carcinoma cells, spleen cells, macrophage, and RAW264.7 cells. To investigate innate immunomodulating effects of LPE on macrophage, we measured tumor necrosis factor-alpha (TNF-α), interleukin-12 (IL-12), and interleukin-10 (IL-10). To investigate innate immunomodulating effects of LPE on RAW264.7 cell, we measured TNF-α, interleukin-6 (IL-6). In addition, TNF-α and nitric oxide (NO) induced by lipopolysaccharide (LPS) were measured after treating with LPE to observe innate immunomodulating effect of LPE on RAW264.7 cell. Also, mitogen-activated protein kinase (MAPK) and nuclear factor κB (NF-κB) were examined by western blot analysis. Results: In an in vitro cytotoxicity analysis, LPE affected tumor cell growth above specific concentration. As compared with the control group, the production of TNF-α, IL-12, and IL-10 were increased in macrophage. As compared with the control group, the production of TNF-α and IL-6 were increased in RAW 264.7 cell. The expression of TNF-α and NO induced by LPS after treating LPE was decreased. In addition, treatment of RAW 264.7 cell with LPE increased the phosphorylation levels of p-extracellular signal-regulated kinase (p-ERK), p-Jun N-terminal kinase (p-JNK), and p-p38. Conclusions: LPE might have impact on the anti-cancer effect by activation of innate immune system and inflammation control.

아토피 피부염을 유발한 마우스에서 백선피지부자복합방의 항염증 효과 (Anti-inflammatory effect of Baecksunpijibujabokhap-bang in Atopic dermatitis model mice)

  • 심부용;김성환;김동희
    • 대한본초학회지
    • /
    • 제29권3호
    • /
    • pp.51-58
    • /
    • 2014
  • Objectives : In order to investigate the efficacy of BJBB on atopic dermatitis, various anti-inflammatory factors were studied. Methods : In-vitro, inflammatory mediators, such as MTT and nitric oxide were detected after the addition of LPS with or without BJBB in Raw 264.7 cells. In-vivo, in order to verify the effectiveness of BJBB in atopic dermatitis animal model, its role in inflammation factors and histological changes were observed in NC/Nga mice. Results : BJBB showed cell viability of 100% or higher in all concentration in Raw 264.7 cells. BJBB inhibited LPS-induced productions of inflammatory mediators nitric oxide in RAW 264.7cells. BJBB treated group showed significant decrease in the expression of IL-1b, IL-6 and TNF-a by 40%, 80% and 44% respectively. Also the group showed decrease in the transcription of IL-1b, IL-6 and TNF-a mRNA in spleen by 41%, 93% and 39% respectively. BJBB treated group showed significant decrease in WBC, neutrophil, lympocyte and monocytes immune cell ratio in blood by 54%, 63%, 57% and 86% respectively. BJBB treated group showed decrease in the expression of IgG by 39% respectively. Also, infiltration of adipocytes into skin was suppressed and the thickness of epidermis and dermis were relatively decreased in the BJBB treated group. Conclusion : BJBB has an anti-inflammatory effects in NC/Nga mouse. Thus, these results suggested a beneficial effect of BJBB in treatment with Atopic dermatitis and inflammatory.

Deletion of the oligopeptide transporter Lmo2193 decreases the virulence of Listeria monocytogenes

  • Li, Honghuan;Qiao, Yanjie;Du, Dongdong;Wang, Jing;Ma, Xun
    • Journal of Veterinary Science
    • /
    • 제21권6호
    • /
    • pp.88.1-88.13
    • /
    • 2020
  • Background: Listeria monocytogenes is a gram-positive bacterium that causes listeriosis mainly in immunocompromised hosts. It can also cause foodborne outbreaks and has the ability to adapt to various environments. Peptide uptake in gram-positive bacteria is enabled by oligopeptide permeases (Opp) in a process that depends on ATP hydrolysis by OppD and F. Previously a putative protein Lmo2193 was predicted to be OppD, but little is known about the role of OppD in major processes of L. monocytogenes, such as growth, virulence, and biofilm formation. Objectives: To determine whether the virulence traits of L. monocytogenes are related to OppD. Methods: In this study, Lmo2193 gene deletion and complementation strains of L. monocytogenes were generated and compared with a wild-type strain for the following: adhesiveness, invasion ability, intracellular survival, proliferation, 50% lethal dose (LD50) to mice, and the amount bacteria in the mouse liver, spleen, and brain. Results: The results showed that virulence of the deletion strain was 1.34 and 0.5 orders of magnitude higher than that of the wild-type and complementation strains, respectively. The function of Lmo2193 was predicted and verified as OppD from the ATPase superfamily. Deletion of lmo2193 affected the normal growth of L. monocytogenes, reduced its virulence in cells and mice, and affected its ability to form biofilms. Conclusions: Deletion of the oligopeptide transporter Lmo2193 decreases the virulence of L. monocytogenes. These effects may be related to OppD's function, which provides a new perspective on the regulation of oligopeptide transporters in L. monocytogenes.

Changes in Physiological Activity of Gardenia Fructus by Roasting Treatment

  • Park, Ji Sun;Choi, Ha Kyoung;Kang, Jeong Eun;Shin, Yong Wook;Lee, In Ah
    • 인간식물환경학회지
    • /
    • 제23권4호
    • /
    • pp.455-464
    • /
    • 2020
  • Background and objective: This study was conducted to examine changes in the composition and physiological activity of Gardenia Fructus after being roasted. Methods: The antioxidant, anti-inflammatory and antibacterial activity of Gardenia Fructus was evaluated using the Gardenia Fructus (GF) and roasted Gardenia Fructus (RGF) ethanol extracts, and their components were analyzed through HPLC. Results: As a result, it was confirmed that the content of gardenoside and geniposide decreased and the content of genipin increased when GF was roasted. The total content of polyphenols was 54.5 ± 2.18 mg gallic acid equivalents (GAE) per gram of the GF extract and 69.6 ± 0.36 mg GAE per gram of the RGF extract. As a result of evaluating 2,2-diphenyl-1-picrylhydrazyl (DPPH) radical scavenging activity, both the GF and RGF extracts showed the similar activity to ascorbic acid at the concentrations of 1 mg/mL or higher. In RAW 264.7 macrophages stimulated by lipopolysaccharides (LPS), the RGF extract showed a higher effect of reducing NO production, and significantly reduced the expression of an inflammatory cytokine, IL-6. As a result of evaluating the antimicrobial activity, the RGF extract showed higher antimicrobial activity against Escherichia coli and Bacillus subtilis. In the dextran sulfate sodium salt (DSS) induced inflammatory bowel disease mouse model, the RGF extract reduced the weight of the spleen, and both the GF and RGF extracts reduced the number of bacteria in the colon. Conclusion: Therefore, it has been confirmed through this study that roasting at a high temperature changes the main components of the GF extract and increases its biological activity. The RGF extract is expected to be used as a natural material with antioxidant, anti-inflammatory and antibacterial effects.

MC903으로 유도하는 아토피피부염 생쥐 동물 모델 최적화 : 유발 기간 단축 및 부작용 감소를 중심으로 (Optimization of MC903-induced Atopic Dermatitis Mouse Model : Focusing on Reducing the Induction Period and Adverse Effects)

  • 김소연;류지효;김형우
    • 동의생리병리학회지
    • /
    • 제37권2호
    • /
    • pp.25-29
    • /
    • 2023
  • This study was designed to establish an atopic dermatitis (AD) model using MC903 and was conducted to find out the optimal challenge concentration that can cause dermatitis symptoms enough to be experimentally verified while reducing adverse effects such as weight loss. MC903 was treated at concentrations of 2, 3, and 4 nmol/day, and evaluation of skin surface symptoms, water contents, histopathological changes, body weight changes, and spleen/body weight ratio was conducted. In addition, the expression level of thymic stromal lymphopoietin (TSLP) was also observed. In our results, MC903 induced AD skin lesions such as erythema, scab and fissure and lowered skin moisture level significantly. In addition, water holding capacities in the 3 or 4 nmol groups were diminished significantly compared to that in the control group. On the other hand, 4 nmol treatment induced a weight loss of up to 20% compared to control group. Finally, a higher level of TSLP expression was observed in the 3 nmol group than in the 2 nmol group or the 4 nmol group. Taken together, we propose a total 14-day protocol consisting of 3 days of sensitization (2 nmol/day) and 6 days of challenge (3 nmol/day).

은갑방(銀甲方)이 염증 관련 cytokines의 유전자 발현과 생성량에 미치는 영향 (The Experimental Study on Anti-inflammatory Effects of Eungapbang (EGB))

  • 이보라;유동열
    • 대한한방부인과학회지
    • /
    • 제22권3호
    • /
    • pp.83-98
    • /
    • 2009
  • Purpose: This study was performed to evaluate the anti-inflammatory effect of Eungapbang extract (EGB). Methods: To evaluate the anti-inflammatory effects of EGB, we nourished RAW 264.7 cell lines in the laboratory dish. Next, inflammatory cytokine concentrations were analyzed. Then, sera were prepared from blood after lipopolysaccharide (LPS) injection in chemically induced mouse models of intestinal inflammation, and Interleukin-1${\beta}$ (IL-1${\beta}$), interleukin-6 (IL-6) and tumour necrosis factor alpha (TNF-${\alpha}$) were measured using ELISA kits. Results: 1. EGB significantly suppressed the expression levels of IL-1${\beta}$ and NOS-II genes at 100, 50 and 10 ${\mu}g/m{\ell}$ concentrations, and IL-6, TNF-${\alpha}$ and COX-2 mRNAs at 100 and 50 ${\mu}g/m{\ell}$ concentrations. 2. EGB significantly reduced the production level of IL-1${\beta}$ and TNF-${\alpha}$ at 100${\mu}g/m{\ell}$ concentrations, and IL-6 at 100 and 50 ${\mu}g/m{\ell}$ concentrations. 3. EGB significantly decreased the production level of IL-1${\beta}$ and IL-6 in sera of acute inflammation induced mice. 4. EGB could suppress the expression level of IL-1${\beta}$ and IL-6 mRNA in spleen tissues in acute inflammation induced mice. Conclusion: On the basis of the above results, it is confirmed that the anti-inflammatory effects of EGB were recognized. Therefore, EGB is recommended as promising therapy for treatment of such ailments as pelvic inflammatory disease.