Browse > Article
http://dx.doi.org/10.14348/molcells.2020.0030

Lysophosphatidylcholine Enhances Bactericidal Activity by Promoting Phagosome Maturation via the Activation of the NF-κB Pathway during Salmonella Infection in Mouse Macrophages  

Lee, Hyo-Ji (Department of Biological Sciences and Institute of Life Sciences, Kangwon National University)
Hong, Wan-Gi (BIT Medical Convergence Graduate Program, Kangwon National University)
Woo, Yunseo (Department of Biological Sciences and Institute of Life Sciences, Kangwon National University)
Ahn, Jae-Hee (Department of Pharmacy, Kangwon National University)
Ko, Hyun-Jeong (Department of Pharmacy, Kangwon National University)
Kim, Hyeran (Department of Biological Sciences and Institute of Life Sciences, Kangwon National University)
Moon, Sungjin (Department of Biological Sciences and Institute of Life Sciences, Kangwon National University)
Hahn, Tae-Wook (Department of Veterinary Medicine, Kangwon National University)
Jung, Young Mee (Department of Chemistry, Kangwon National University)
Song, Dong-Keun (Department of Pharmacology, College of Medicine, Hallym University)
Jung, Yu-Jin (Department of Biological Sciences and Institute of Life Sciences, Kangwon National University)
Abstract
Salmonella enterica serovar Typhimurium (S. Typhimurium) is a facultative intracellular pathogen that causes salmonellosis and mortality worldwide. S. Typhimurium infects macrophages and survives within phagosomes by avoiding the phagosome-lysosome fusion system. Phagosomes sequentially acquire different Rab GTPases during maturation and eventually fuse with acidic lysosomes. Lysophosphatidylcholine (LPC) is a bioactive lipid that is associated with the generation of chemoattractants and reactive oxygen species (ROS). In our previous study, LPC controlled the intracellular growth of Mycobacterium tuberculosis by promoting phagosome maturation. In this study, to verify whether LPC enhances phagosome maturation and regulates the intracellular growth of S. Typhimurium, macrophages were infected with S. Typhimurium. LPC decreased the intracellular bacterial burden, but it did not induce cytotoxicity in S. Typhimurium-infected cells. In addition, combined administration of LPC and antibiotic significantly reduced the bacterial burden in the spleen and the liver. The ratios of the colocalization of intracellular S. Typhimurium with phagosome maturation markers, such as early endosome antigen 1 (EEA1) and lysosome-associated membrane protein 1 (LAMP-1), were significantly increased in LPC-treated cells. The expression level of cleaved cathepsin D was rapidly increased in LPC-treated cells during S. Typhimurium infection. Treatment with LPC enhanced ROS production, but it did not affect nitric oxide production in S. Typhimurium-infected cells. LPC also rapidly triggered the phosphorylation of IκBα during S. Typhimurium infection. These results suggest that LPC can improve phagosome maturation via ROS-induced activation of NF-κB pathway and thus may be developed as a therapeutic agent to control S. Typhimurium growth.
Keywords
bactericidal activity; lysophosphatidylcholine; macrophage; phagosome maturation; reactive oxygen species; Salmonella Typhimurium;
Citations & Related Records
Times Cited By KSCI : 5  (Citation Analysis)
연도 인용수 순위
1 Smith, A.C., Do Heo, W., Braun, V., Jiang, X.J., Macrae, C., Casanova, J.E., Scidmore, M.A., Grinstein, S., Meyer, T., and Brumell, J.H. (2007). A network of Rab GTPases controls phagosome maturation and is modulated by Salmonella enterica serovar Typhimurium. J. Cell Biol. 176, 263-268.   DOI
2 Steele-Mortimer, O. (2008). The Salmonella-containing vacuole: moving with the times. Curr. Opin. Microbiol. 11, 38-45.   DOI
3 Uribe-Querol, E. and Rosales, C. (2017). Control of phagocytosis by microbial pathogens. Front. Immunol. 8, 1368.   DOI
4 van Asten, A.J., Koninkx, J.F., and van Dijk, J.E. (2005). Salmonella entry: M cells versus absorptive enterocytes. Vet. Microbiol. 108, 149-152.   DOI
5 Bae, Y.S., Oh, H., Rhee, S.G., and Yoo, Y.D. (2011). Regulation of reactive oxygen species generation in cell signaling. Mol. Cells 32, 491-509.   DOI
6 Bakowski, M.A., Braun, V., and Brumell, J.H. (2008). Salmonella-containing vacuoles: directing traffic and nesting to grow. Traffic 9, 2022-2031.   DOI
7 Behnsen, J., Perez-Lopez, A., Nuccio, S.P., and Raffatellu, M. (2015). Exploiting host immunity: the Salmonella paradigm. Trends Immunol. 36, 112-120.   DOI
8 Benes, P., Vetvicka, V., and Fusek, M. (2008). Cathepsin D--many functions of one aspartic protease. Crit. Rev. Oncol. Hematol. 68, 12-28.   DOI
9 Bernal-Bayard, J. and Ramos-Morales, F. (2018). Molecular mechanisms used by Salmonella to evade the immune system. Curr. Issues Mol. Biol. 25, 133-167.   DOI
10 Blander, J.M. and Medzhitov, R. (2004). Regulation of phagosome maturation by signals from toll-like receptors. Science 304, 1014-1018.   DOI
11 Bohdanowicz, M. and Grinstein, S. (2010). Vesicular traffic: a Rab SANDwich. Curr. Biol. 20, R311-R314.
12 Broz, P., Ohlson, M.B., and Monack, D.M. (2012). Innate immune response to Salmonella typhimurium, a model enteric pathogen. Gut Microbes 3, 62-70.   DOI
13 Desjardins, M. (1995). Biogenesis of phagolysosomes: the 'kiss and run' hypothesis. Trends Cell Biol. 5, 183-186.
14 Brumell, J.H., Tang, P., Zaharik, M.L., and Finlay, B.B. (2002). Disruption of the Salmonella-containing vacuole leads to increased replication of Salmonella enterica serovar typhimurium in the cytosol of epithelial cells. Infect. Immun. 70, 3264-3270.   DOI
15 Buchmeier, N.A. and Heffron, F. (1991). Inhibition of macrophage phagosome-lysosome fusion by Salmonella typhimurium. Infect. Immun. 59, 2232-2238.   DOI
16 Cho, D.H., Kim, J.K., and Jo, E.K. (2020). Mitophagy and innate immunity in infection. Mol. Cells 43, 10-22.   DOI
17 Dougan, G., John, V., Palmer, S., and Mastroeni, P. (2011). Immunity to salmonellosis. Immunol. Rev. 240, 196-210.   DOI
18 Flannagan, R.S., Jaumouille, V., and Grinstein, S. (2012). The cell biology of phagocytosis. Annu. Rev. Pathol. 7, 61-98.   DOI
19 Garcia-del Portillo, F., Nunez-Hernandez, C., Eisman, B., and Ramos-Vivas, J. (2008). Growth control in the Salmonella-containing vacuole. Curr. Opin. Microbiol. 11, 46-52.   DOI
20 Haraga, A., Ohlson, M.B., and Miller, S.I. (2008). Salmonellae interplay with host cells. Nat. Rev. Microbiol. 6, 53-66.   DOI
21 Harrison, R.E., Bucci, C., Vieira, O.V., Schroer, T.A., and Grinstein, S. (2003). Phagosomes fuse with late endosomes and/or lysosomes by extension of membrane protrusions along microtubules: role of Rab7 and RILP. Mol. Cell. Biol. 23, 6494-6506.   DOI
22 Huynh, K.K., Eskelinen, E.L., Scott, C.C., Malevanets, A., Saftig, P., and Grinstein, S. (2007). LAMP proteins are required for fusion of lysosomes with phagosomes. EMBO J. 26, 313-324.   DOI
23 Hong, C.W. and Song, D.K. (2008). Immunomodulatory actions of lysophosphatidylcholine. Biomol. Ther. 16, 69-76.   DOI
24 Hossain, M.A., Park, H.C., Lee, K.J., Park, S.W., Park, S.C., and Kang, J. (2020). In vitro synergistic potentials of novel antibacterial combination therapies against Salmonella enterica serovar Typhimurium. BMC Microbiol. 20, 118.   DOI
25 Hutagalung, A.H. and Novick, P.J. (2011). Role of Rab GTPases in membrane traffic and cell physiology. Physiol. Rev. 91, 119-149.   DOI
26 Jeon, J.W., Park, B.C., Jung, J.G., Jang, Y.S., Shin, E.C., and Park, Y.W. (2013). The soluble form of the cellular prion protein enhances phagocytic activity and cytokine production by human monocytes via activation of ERK and NF-kappaB. Immune Netw. 13, 148-156.   DOI
27 Johnson, R., Mylona, E., and Frankel, G. (2018). Typhoidal Salmonella: distinctive virulence factors and pathogenesis. Cell. Microbiol. 20, e12939.   DOI
28 Kabarowski, J.H. (2009). G2A and LPC: regulatory functions in immunity. Prostaglandins Other Lipid Mediat. 89, 73-81.   DOI
29 Lee, H.J., Ko, H.J., Kim, S.H., and Jung, Y.J. (2019). Pasakbumin A controls the growth of Mycobacterium tuberculosis by enhancing the autophagy and production of antibacterial mediators in mouse macrophages. PLoS One 14, e0199799.   DOI
30 Lee, H.J., Ko, H.J., and Jung, Y.J. (2016a). Insufficient generation of mycobactericidal mediators and inadequate level of phagosomal maturation are related with susceptibility to virulent Mycobacterium tuberculosis infection in mouse macrophages. Front. Microbiol. 7, 541.   DOI
31 Lee, H.J., Ko, H.J., Song, D.K., and Jung, Y.J. (2018). Lysophosphatidylcholine promotes phagosome maturation and regulates inflammatory mediator production through the protein kinase A-phosphatidylinositol 3 kinase-p38 mitogen-activated protein kinase signaling pathway during Mycobacterium tuberculosis infection in mouse macrophages. Front. Immunol. 9, 920.   DOI
32 Lee, H.J., Woo, Y., Hahn, T.W., Jung, Y.M., and Jung, Y.J. (2020). Formation and maturation of the phagosome: a key mechanism in innate immunity against intracellular bacterial infection. Microorganisms 8, 1298.   DOI
33 Lee, S., Wi, S.M., Min, Y., and Lee, K.Y. (2016b). Peroxiredoxin-3 is involved in bactericidal activity through the regulation of mitochondrial reactive oxygen species. Immune Netw. 16, 373-380.   DOI
34 Pauwels, A.M., Trost, M., Beyaert, R., and Hoffmann, E. (2017). Patterns, receptors, and signals: regulation of phagosome maturation. Trends Immunol. 38, 407-422.   DOI
35 Monack, D.M. (2013). Helicobacter and Salmonella persistent infection strategies. Cold Spring Harb. Perspect. Med. 3, a010348.   DOI
36 Orsi, R.D., Sforcin, J.M., Funari, S.R.C., Fernandes, A., and Bankova, V. (2006). Synergistic effect of propolis and antibiotics on the Salmonella typhi. Braz. J. Microbiol. 37, 108-112.
37 Park, C.H., Kim, M.R., Han, J.M., Jeong, T.S., and Sok, D.E. (2009). Lysophosphatidylcholine exhibits selective cytotoxicity, accompanied by ROS formation, in RAW 264.7 macrophages. Lipids 44, 425-435.   DOI
38 Pires, D., Marques, J., Pombo, J.P., Carmo, N., Bettencourt, P., Neyrolles, O., Lugo-Villarino, G., and Anes, E. (2016). Role of cathepsins in Mycobacterium tuberculosis survival in human macrophages. Sci. Rep. 6, 32247.   DOI
39 Wemyss, M.A. and Pearson, J.S. (2019). Host cell death responses to nontyphoidal Salmonella infection. Front. Immunol. 10, 1758.   DOI
40 Vieira, O.V., Bucci, C., Harrison, R.E., Trimble, W.S., Lanzetti, L., Gruenberg, J., Schreiber, A.D., Stahl, P.D., and Grinstein, S. (2003). Modulation of Rab5 and Rab7 recruitment to phagosomes by phosphatidylinositol 3-kinase. Mol. Cell. Biol. 23, 2501-2514.   DOI
41 Wick, M.J. (2011). Innate immune control of Salmonella enterica serovar Typhimurium: mechanisms contributing to combating systemic Salmonella infection. J. Innate Immun. 3, 543-549.   DOI
42 Wong, C.E., Sad, S., and Coombes, B.K. (2009). Salmonella enterica serovar typhimurium exploits Toll-like receptor signaling during the hostpathogen interaction. Infect. Immun. 77, 4750-4760.   DOI
43 Woo, Y., Kim, H., Kim, K.C., Han, J.A., and Jung, Y.J. (2018). Tumor-secreted factors induce IL-1beta maturation via the glucose-mediated synergistic axis of mTOR and NF-kappaB pathways in mouse macrophages. PLoS One 13, e0209653.   DOI
44 Prashar, A., Schnettger, L., Bernard, E.M., and Gutierrez, M.G. (2017). Rab GTPases in immunity and inflammation. Front. Cell. Infect. Microbiol. 7, 435.   DOI
45 Hong, C.W., Kim, T.K., Ham, H.Y., Nam, J.S., Kim, Y.H., Zheng, H., Pang, B., Min, T.K., Jung, J.S., Lee, S.N., et al. (2010). Lysophosphatidylcholine increases neutrophil bactericidal activity by enhancement of azurophil granule-phagosome fusion via glycine.GlyR alpha 2/TRPM2/p38 MAPK signaling. J. Immunol. 184, 4401-4413.   DOI
46 Kamaruzzaman, N.F., Kendall, S., and Good, L. (2017). Targeting the hard to reach: challenges and novel strategies in the treatment of intracellular bacterial infections. Br. J. Pharmacol. 174, 2225-2236.   DOI
47 Lee, H.J., Kim, K.C., Han, J.A., Choi, S.S., and Jung, Y.J. (2015). The early induction of suppressor of cytokine signaling 1 and the downregulation of toll-like receptors 7 and 9 induce tolerance in costimulated macrophages. Mol. Cells 38, 26-32.   DOI
48 Levin, R., Grinstein, S., and Canton, J. (2016). The life cycle of phagosomes: formation, maturation, and resolution. Immunol. Rev. 273, 156-179.   DOI
49 Meresse, S., Steele-Mortimer, O., Finlay, B.B., and Gorvel, J.P. (1999). The rab7 GTPase controls the maturation of Salmonella typhimuriumcontaining vacuoles in HeLa cells. EMBO J. 18, 4394-4403.   DOI
50 Miyazaki, H., Midorikawa, N., Fujimoto, S., Miyoshi, N., Yoshida, H., and Matsumoto, T. (2017). Antimicrobial effects of lysophosphatidylcholine on methicillin-resistant Staphylococcus aureus. Ther. Adv. Infect. Dis. 4, 89-94.   DOI
51 Rhen, M. (2019). Salmonella and reactive oxygen species: a love-hate relationship. J. Innate Immun. 11, 216-226.   DOI
52 Rink, J., Ghigo, E., Kalaidzidis, Y., and Zerial, M. (2005). Rab conversion as a mechanism of progression from early to late endosomes. Cell 122, 735-749.   DOI
53 Shivcharan, S., Yadav, J., and Qadri, A. (2018). Host lipid sensing promotes invasion of cells with pathogenic Salmonella. Sci. Rep. 8, 15501.   DOI
54 Simonsen, A., Gaullier, J.M., D'Arrigo, A., and Stenmark, H. (1999). The Rab5 effector EEA1 interacts directly with syntaxin-6. J. Biol. Chem. 274, 28857-28860.   DOI
55 Yang, C.S., Yuk, J.M., and Jo, E.K. (2009). The role of nitric oxide in mycobacterial infections. Immune Netw. 9, 46-52.   DOI
56 Yan, J.J., Jung, J.S., Lee, J.E., Lee, J., Huh, S.O., Kim, H.S., Jung, K.C., Cho, J.Y., Nam, J.S., Suh, H.W., et al. (2004). Therapeutic effects of lysophosphatidylcholine in experimental sepsis. Nat. Med. 10, 161-167.   DOI