• 제목/요약/키워드: mouse brain

검색결과 610건 처리시간 0.031초

Role of soy lecithin combined with soy isoflavone on cerebral blood flow in rats of cognitive impairment and the primary screening of its optimum combination

  • Hongrui Li;Xianyun Wang;Xiaoying Li;Xueyang Zhou;Xuan Wang;Tiantian Li;Rong Xiao;Yuandi Xi
    • Nutrition Research and Practice
    • /
    • 제17권2호
    • /
    • pp.371-385
    • /
    • 2023
  • BACKGROUND/OBJECTIVES: Soy isoflavone (SIF) and soy lecithin (SL) have beneficial effects on many chronic diseases, including neurodegenerative diseases. Regretfully, there is little evidence to show the combined effects of these soy extractives on the impairment of cognition and abnormal cerebral blood flow (CBF). This study examined the optimal combination dose of SIF + SL to provide evidence for improving CBF and protecting cerebrovascular endothelial cells. MATERIALS/METHODS: In vivo study, SIF50 + SL40, SIF50 + SL80 and SIF50 + SL160 groups were obtained. Morris water maze, laser speckle contrast imaging (LSCI), and hematoxylin-eosin staining were used to detect learning and memory impairment, CBF, and damage to the cerebrovascular tissue in rat. The 8-hydroxy-2'-deoxyguanosine (8-OHdG) and the oxidized glutathione (GSSG) were detected. The anti-oxidative damage index of superoxide dismutase (SOD) and glutathione (GSH) in the serum of an animal model was also tested. In vitro study, an immortalized mouse brain endothelial cell line (bEND.3 cells) was used to confirm the cerebrovascular endothelial cell protection of SIF + SL. In this study, 50 µM of Gen were used, while the 25, 50, or 100 µM of SL for different incubation times were selected first. The intracellular levels of 8-OHdG, SOD, GSH, and GSSG were also detected in the cells. RESULTS: In vivo study, SIF + SL could increase the target crossing times significantly and shorten the total swimming distance of rats. The CBF in the rats of the SIF50 + SL40 group and SIF50 + SL160 group was enhanced. Pathological changes, such as attenuation of the endothelium in cerebral vessels were much less in the SIF50 + SL40 group and SIF50 + SL160 group. The 8-OHdG was reduced in the SIF50 + SL40 group. The GSSG showed a significant decrease in all SIF + SL pretreatment groups, but the GSH showed an opposite result. SOD was upregulated by SIF + SL pretreatment. Different combinations of Genistein (Gen)+SL, the secondary proof of health benefits found in vivo study, showed they have effective anti-oxidation and less side reaction on protecting cerebrovascular endothelial cell. SIF50 + SL40 in rats experiment and Gen50 + SL25 in cell test were the optimum joint doses on alleviating cognitive impairment and regulating CBF through protecting cerebrovascular tissue by its antioxidant activity. CONCLUSIONS: SIF+SL could significantly prevent cognitive defect induced by β-Amyloid through regulating CBF. This kind of effect might be attributed to its antioxidant activity on protecting cerebral vessels.

Transgenic Mice Overexpressing Cocaine-Amphetamine Regulated Transcript in the Brain and Spinal Cord (뇌와 척수에서 Cocaine-Amphetamine Regulated Transcript를 과발현하는 형질전환 생쥐)

  • Choi, S.H.;Lee, J.W.;Park, H.D.;Jahng, J.W.;Chung, K.S.;Lee, H.T.
    • Korean Journal of Animal Reproduction
    • /
    • 제25권4호
    • /
    • pp.389-397
    • /
    • 2001
  • Cocaine-amphetamine regulated transcript (CART), a satiety factor regulated by leptin, is associated with food intake and motor behavior. In knock out studies, Leu34Phe mutation of human CART gene resulted in obese phenotype but mice carrying a targeted deletion of the CART gene exhibited no dramatic increase of body weight on normal fat diet. To establish a new transgenic mouse model for determining the function of CART on feeding behavior in vivo, we constructed the fusion gene, CART gene under the control of neurofilament light chain promoter, which regulates gene expression at the stage of neuronal differentiation. Transgenic mice were generated by microinjection method and screened by PCR and Southern blot analyses. In these transgenic mice, overexpression of CART was detected by in situ hybridization in spinal cords and brains at 13.5 days post-coitum embryos. At six weeks of age, RT-PCR analysis showed that exogenous CART mRNA was expressed strongly in brains and spinal cords, but not much in other tissues. Our results suggest that these transgenic mice provide a new model to investigate the function of CART gene in neuronal network associated with feeding behavior.

  • PDF

Suppression of Glioblastoma Stem Cell Potency and Tumor Growth via LRRK2 Inhibition

  • Saewhan Park;Kyung-Hee Kim;Yun-Hee Bae;Young Taek Oh;Hyemi Shin;Hyung Joon Kwon;Chan Il Kim;Sung Soo Kim;Hwan-Geun Choi;Jong Bae Park;Byoung Dae Lee
    • International Journal of Stem Cells
    • /
    • 제17권3호
    • /
    • pp.319-329
    • /
    • 2024
  • Leucine-rich repeat kinase 2 (LRRK2), a large GTP-regulated serine/threonine kinase, is well-known for its mutations causing late-onset Parkinson's disease. However, the role of LRRK2 in glioblastoma (GBM) carcinogenesis has not yet been fully elucidated. Here, we discovered that LRRK2 was overexpressed in 40% of GBM patients, according to tissue microarray analysis, and high LRRK2 expression correlated with poor prognosis in GBM patients. LRRK2 and stemness factors were highly expressed in various patient-derived GBM stem cells, which are responsible for GBM initiation. Canonical serum-induced differentiation decreased the expression of both LRRK2 and stemness factors. Given that LRRK2 is a key regulator of glioma stem cell (GSC) stemness, we developed DNK72, a novel LRRK2 kinase inhibitor that penetrates the blood-brain barrier. DNK72 binds to the phosphorylation sites of active LRRK2 and dramatically reduced cell proliferation and stemness factors expression in in vitro studies. Orthotopic patient-derived xenograft mouse models demonstrated that LRRK2 inhibition with DNK72 effectively reduced tumor growth and increased survival time. We propose that LRRK2 plays a significant role in regulating the stemness of GSCs and that suppression of LRRK2 kinase activity leads to reduced GBM malignancy and proliferation. In the near future, targeting LRRK2 in patients with high LRRK2-expressing GBM could offer a superior therapeutic strategy and potentially replace current clinical treatment methods.

Anti-oxidative and Cytoprotective Effect of Ursodeoxycholic Acid, an Active Compound from the Bear's Gall, in Mouse Microglia (생쥐 뇌소교세포주에서 웅담추출활성성분(우르소데옥시콜린산)의 항산화 및 세포보호효과)

  • Joo, Seong-Soo;Kim, Seong-Kun;Yoo, Yeong-Min;Ryu, In-Wang;Kim, Kyung-Hoon;Lee, Do-Ik
    • Korean Journal of Food Science and Technology
    • /
    • 제38권3호
    • /
    • pp.452-455
    • /
    • 2006
  • The in vitro cytoprotective and anti-oxidative effects of ursodeoxycholic acid, a major active compound from bear's gall were investigated in mouse brain microglia. In the present study, we wished to scrutinize the potential role of UDCA as an anti-neurodegenerative agent in neurodegenerative disease such as Alzheimer's disease. This concept was supported by the multiple preliminary studies in which UDCA has an anti-inflammatory effect in microglial cells. In the study, we found that $7.5\;{\mu}g/mL$ UDCA was effective in the protection of cells from $H_2O_2$ damage, a reactive oxygen, and the resuIt was coincided with the anti-apoptotic effect in DAPI staining. Moreover, the metal-catalyzed oxidation study showed that UDCA has antioxidant effect as much as ascorbic acid at $50{\sim}100\;{\mu}g/mL$. In conclusion, these study results suggested that neuro-degenerative diseases such as Alzheimer's disease probably caused by over-expressed beta amyloid peptide in elderly people can be controled by UDCA through an anti-inflammatory, anti-oxidative and anti-apoptotic effect. The evidences showed in the study may be references for more in-depth in vivo and clinical studies for a candidate of anti-neurodegenerative therapy in the near future.

Feasibility of Reflecting Improvement of Tumor Hypoxia by Mild Hyperthermia in Experimental Mouse Tumors with $^18F-Fluoromisonidazole$ (저온온열치료에 의한 종양 내 저산소상태 개선효과를 $^18F$-Fluoromisonidazole의 섭취 변화를 이용한 평가)

  • Lee Sang-wook;Ryu Jin Sook;Oh Seung Joon;Im Ki Chun;Chen Gi Jeong;Lee So Ryung;Song Do Young;Im Soo Jeong;Moon Eun Sook;Kim Jong Hoon;Ahn Seung Do;Shin Seong Soo;Lee Kyeong Ryong
    • Radiation Oncology Journal
    • /
    • 제22권4호
    • /
    • pp.288-297
    • /
    • 2004
  • Puporse: The aims of this study were to evaluate the change of $[^18F]fluoromisonidazole$($[^18F]FMISO$) uptake in C3H mouse squamous cell carcinoma-VII (SCC-VII) treated with mild hyperthermia ($42^{circ}C$) and nicotinamide and to assess the biodistribution of the markers in normal tissues under similar conditions. Methods and Materials: $[^18F]FMISO$ was producedby our hospital. Female C3H mice with a C3H SCC-VII tumor grown on their extremities were used. Tumors were size matched. Non-anaesthetized, tumor-bearing mice underwent control or mild hyperthermia at $42^{circ}C$ for 60 min with nicotinamide (50 mg/kg i.p. injected) and were examined by gamma counter, autoradiography and animal PET scan 3 hours after tracer i.v. injected with breathing room air, The biodistribution of these agents were obtained at 3 h after $[^18F]FMISO$ injection. Blood, tumor, muscle, heart, lung, liver, kidney, brain, bone, spleen, and intestine were removed, counted for radioactivity and weighed. The tumor and liver were frozen and cut with a cryomicrotome into 10- um sections. The spatial distribution of radioactivity from the tissue sections was determined with digital autoradiography. Results: The mild hyperthermia with nicotinamide treatment had only slight effects on the biodistribution of either marker in normal tissues. We observed that the whole tumor radioactivity uptake ratios were higher in the control mice than in the mild hyperthermia with nicotinamide treated mice for $[^18F]FMISO$ ($1.56{\pm}1.03$ vs. $0.67{\pm}0.30$; p=0.063). In addition, autoradiography and animal PET scan demonstrated that the area and intensity of $[^18F]FMISO$ uptake was significantly decreased. Conclusion: Mild hyperthermla and nicotinamide significantly improved tumor hypoxia using $[^18F]FMISO$ and this uptake reflected tumor hypoxic status.

Increase in Neurogenesis of Neural Stem Cells Cultured from Postnatal Mouse Subventricular Zone by Nifedipine (L-type 칼슘 채널을 저해하는 저해제, nifedipine에 의한 쥐 뇌실하 영역 신경줄기세포의 신경세포로의 분화 촉진)

  • Park, Ki-Youb;Kim, Man Su
    • Journal of Life Science
    • /
    • 제32권2호
    • /
    • pp.108-118
    • /
    • 2022
  • The subventricular zone (SVZ) in the brain contains neural stem cells (NSCs) that generate new neurons throughout one's lifetime. Many extracellular and intracellular factors that affect cell proliferation and neuronal differentiation of NSCs are already well-known. Recently, L-type calcium channels have been reported to regulate neural development and are present in NSCs, differentiating neuroblasts, and mature neurons in the SVZ. Nifedipine, a blocker of L-type calcium channels, has been long used as a therapeutic drug for hypertension. However, studies on the use of nifedipine to inhibit L-type calcium channels of NSCs are lacking. Herein, we treated NSCs cultured from mouse postnatal SVZ with nifedipine during neuronal differentiation. Nifedipine increased the number of Tuj1-positive neurons but did not significantly change the number of Olig2-positive oligodendrocytes. Nifedipine increased cell division during early differentiation, which was detected using the 5-ethynyl-2'-deoxyuridine incorporation assay and immunocytochemistry assessment by staining the cells with phosphorylated histone H3, a mitosis marker. Nifedipine increased the transcription of Dlx2, a neurogenic transcription factor, and the level of Mash1, a marker for early neurogenesis. In addition to nifedipine, verapamil, which is also an L-type calcium channel blocker, showed a slight increase in neurogenesis, but its statistical significance was very low. In contrast, pimozide, a T-type calcium channel blocker, did not affect neurogenesis, although T-type calcium channel genes Cav3.1, Cav3.2, and Cav3.3 were expressed. In summary, nifedipine might promote the neuronal fate of NSCs during early differentiation and calcium signaling through L-type calcium channels might be involved in neuronal differentiation, especially during the early stages of differentiation.

Histone Methylation Regulates Retinoic Acid-induced Hoxc Gene Expression in F9 EC Cells (F9 EC 세포에서 레티노산에 의해 유도되는 Hoxc 유전자의 발현에 히스톤 메틸화가 미치는 영향)

  • Min, Hyehyun;Kim, Myoung Hee
    • Journal of Life Science
    • /
    • 제25권6호
    • /
    • pp.703-708
    • /
    • 2015
  • Hox genes encode a highly conserved family of homeodomain-containing transcription factors controlling vertebrate pattern formation along the anteroposterior body axis during embryogenesis. Retinoic acid (RA) is a key morphogen in embryogenesis and a critical regulator of both adult and embryonic cellular activity. Specifically, RA regulates Hox gene expression in mouse- or human-derived embryonic carcinoma (EC) cells. Histone modification has been reported to play a pivotal role in the process of RA-induced gene expression and cell differentiation. As histone modification is thought to play an essential role in RA-induced Hox gene expression, we examined RA-induced initiation of collinear expression of Hox genes and the corresponding histone modifications in F9 murine embryonic teratocarcinoma (EC) cells. Hox expression patterns and histone modifications were analyzed by semiquantitative RT-PCR, RNA-sequencing, and chromatin immuno-precipitation (ChIP)-PCR analyses. The Hoxc4 gene (D0) was initiated earlier than the Hoxc5 to –c10 genes (D3) upon RA treatment (day 0 [D0], day 1 [D1], and day 3 [D3]). The Hox nonexpressing D0 sample had a strong repressive marker, H3K27me3, than the D1 and D3 samples. In the D1 and D3 samples, reduced enrichment of the H3K27me3 marker was observed in the whole cluster. The active H3K4me3 marker was closely associated with the collinear expression of Hoxc genes. Thus, the Hoxc4 gene (D1) and all Hoxc genes (D3) expressed H3K4me3 upon transcription activation. In conclusion, these data indicated that removing H3K27me3 and acquiring H3K4me3 regulated RA-induced Hoxc gene collinearity in F9 cells.

Standard Chemotherapy with Excluding Isoniazid in a Murine Model of Tuberculosis (마우스 결핵 모델에서 Isoniazid를 제외한 표준치료의 예비 연구)

  • Shim, Tae Sun;Lee, Eun Gae;Choi, Chang Min;Hong, Sang-Bum;Oh, Yeon-Mok;Lim, Chae-Man;Lee, Sang Do;Koh, Younsuck;Kim, Woo Sung;Kim, Dong Soon;Cho, Sang-Nae;Kim, Won Dong
    • Tuberculosis and Respiratory Diseases
    • /
    • 제65권3호
    • /
    • pp.177-182
    • /
    • 2008
  • Background: Isoniazid (INH, H) is a key drug of the standard first-line regimen for the treatment of tuberculosis (TB), yet some reports have suggested that treatment efficacy was maintained even though INH was omitted from the treatment regimen. Methods: One hundred forty C57BL/6 mice were infected with the H37Rv strain of M. tuberculosis with using a Glas-Col aerosol generation device, and this resulted in depositing about 100 bacilli in the lung. Four weeks after infection, anti-TB treatment was initiated with varying regimens for 4-8 weeks; Group 1: no treatment (control), Group 2 (4HREZ): 4 weeks of INH, rifampicin (R), pyrazinamide (Z) and ethambutol (E), Group 3: 1HREZ/3REZ, Group 4: 4REZ, Group 5: 4HREZ/4HRE, Group 6: 1HREZ/3REZ/4RE, and Group 7: 4REZ/4RE. The lungs and spleens were harvested at several time points until 28 weeks after infection, and the colony-forming unit (CFU) counts were determined. Results: The CFU counts increased steadily after infection in the control group. In the 4-week treatment groups (Group 2-4), even though the culture was negative at treatment completion, the bacilli grew again at the 12-week and 20-week time points after completion of treatment. In the 8-week treatment groups (Groups 5-7), the bacilli did not grow in the lung at 4 weeks after treatment initiation and thereafter. In the spleens of Group 7 in which INH was omitted from the treatment regimen, the culture was negative at 4-weeks after treatment initiation and thereafter. However, in Groups 5 and 6 in which INH was taken continuously or intermittently, the bacilli grew in the spleen at some time points after completion of treatment. Conclusion: TThe exclusion of INH from the standard first-line regimen did not affect the treatment outcome in a murine model of TB in the early stage of disease. Further studies using a murine model of chronic TB are necessary to clarify the role of INH in the standard first-line regimen for treating TB.

Effect of Reserpine on the Behavioral Defects, Aβ-42 Deposition and NGF Metabolism in Tg2576 Transgenic Mouse Model for Alzheimer's Disease (알츠하이머질환 모델동물인 Tg2576마우스의 행동, Aβ-42 침적, 신경성장인자 대사에 미치는 reserpine의 영향)

  • Go, Jun;Choi, Sun Il;Kim, Ji Eun;Lee, Young Ju;Kwak, Moon Hwa;Koh, Eun Kyoung;Song, Sung Hwa;Sung, Ji Eun;Hwang, Dae Youn
    • Journal of Life Science
    • /
    • 제23권6호
    • /
    • pp.812-824
    • /
    • 2013
  • Reserpine, an anti-hypertensive drug, is able to positively modulate several phenotypes associated with $A{\beta}$ toxicity in a Caenorhabditis elegans model of Alzheimer's disease (AD). We investigated into the therapeutic effects of reserpine on mammalian neurodegenerative disorders, and found that significant alteration of the key factors influencing AD was detected in Tg2576 mice after reserpine treatment for 30 days. The aggressive behavior of Tg2576 mice was significantly improved upon reserpine treatment, whereas their social contact was consistently maintained. Furthermore, the levels of $A{\beta}$-42 peptide in the hippocampus of the brain and blood serum were lower in the reserpine-treated group than in the vehicle-treated group. Among g-secretase components, the expression levels of PS-2, Pen-2, and APH-1 were slightly lower in reserpine-treated Tg2576 mice, although a significant change in nicastrin (NCT) expression was not detected. Furthermore, the serum level of nerve growth factor (NGF) increased in reserpine-treated Tg2576 mice compared with vehicle-treated mice. Among down-stream effectors of the NGF receptor TrkA signaling pathway, reserpine treatment induced elevation of TrkA phosphorylation and reduction of ERK phosphorylation. In addition, in the NGF receptor $p75^{NTR}$ signaling pathway, the expression levels of $p75^{NTR}$ and Bcl-2 were enhanced in reserpine-treated Tg2576 mice compared with vehicle-treated mice, whereas the expression level of RhoA declined. Overall, these results suggest that reserpine can help relieve AD pathogenesis in Tg2576 mice through downregulation of $A{\beta}$-42 deposition, alteration of ${\gamma}$-secretase components, and regulation of NGF metabolism.

Local Shape Analysis of the Hippocampus using Hierarchical Level-of-Detail Representations (계층적 Level-of-Detail 표현을 이용한 해마의 국부적인 형상 분석)

  • Kim Jeong-Sik;Choi Soo-Mi;Choi Yoo-Ju;Kim Myoung-Hee
    • The KIPS Transactions:PartA
    • /
    • 제11A권7호
    • /
    • pp.555-562
    • /
    • 2004
  • Both global volume reduction and local shape changes of hippocampus within the brain indicate their abnormal neurological states. Hippocampal shape analysis consists of two main steps. First, construct a hippocampal shape representation model ; second, compute a shape similarity from this representation. This paper proposes a novel method for the analysis of hippocampal shape using integrated Octree-based representation, containing meshes, voxels, and skeletons. First of all, we create multi-level meshes by applying the Marching Cube algorithm to the hippocampal region segmented from MR images. This model is converted to intermediate binary voxel representation. And we extract the 3D skeleton from these voxels using the slice-based skeletonization method. Then, in order to acquire multiresolutional shape representation, we store hierarchically the meshes, voxels, skeletons comprised in nodes of the Octree, and we extract the sample meshes using the ray-tracing based mesh sampling technique. Finally, as a similarity measure between the shapes, we compute $L_2$ Norm and Hausdorff distance for each sam-pled mesh pair by shooting the rays fired from the extracted skeleton. As we use a mouse picking interface for analyzing a local shape inter-actively, we provide an interaction and multiresolution based analysis for the local shape changes. In this paper, our experiment shows that our approach is robust to the rotation and the scale, especially effective to discriminate the changes between local shapes of hippocampus and more-over to increase the speed of analysis without degrading accuracy by using a hierarchical level-of-detail approach.