Anti-oxidative and Cytoprotective Effect of Ursodeoxycholic Acid, an Active Compound from the Bear's Gall, in Mouse Microglia

생쥐 뇌소교세포주에서 웅담추출활성성분(우르소데옥시콜린산)의 항산화 및 세포보호효과

  • Joo, Seong-Soo (Department of Immunology, College of Pharmacy. Chung-Ang University) ;
  • Kim, Seong-Kun (Department of Immunology, College of Pharmacy. Chung-Ang University) ;
  • Yoo, Yeong-Min (Department of Oriental Pathology, College of Oriental Medicine, Sangji University) ;
  • Ryu, In-Wang (Division of Life Sciences, College of Natural Sciences, Kangwon National University) ;
  • Kim, Kyung-Hoon (Division of Life Sciences, College of Natural Sciences, Kangwon National University) ;
  • Lee, Do-Ik (Department of Immunology, College of Pharmacy. Chung-Ang University)
  • 주성수 (중앙대학교 약학대학 면역학교실) ;
  • 김성근 (중앙대학교 약학대학 면역학교실) ;
  • 유영민 (상지대학교 한의과대학 병리학교실) ;
  • 류인왕 (강원대학교 자연과학대학 생명과학부) ;
  • 김경훈 (강원대학교 자연과학대학 생명과학부) ;
  • 이도익 (중앙대학교 약학대학 면역학교실)
  • Published : 2006.06.01

Abstract

The in vitro cytoprotective and anti-oxidative effects of ursodeoxycholic acid, a major active compound from bear's gall were investigated in mouse brain microglia. In the present study, we wished to scrutinize the potential role of UDCA as an anti-neurodegenerative agent in neurodegenerative disease such as Alzheimer's disease. This concept was supported by the multiple preliminary studies in which UDCA has an anti-inflammatory effect in microglial cells. In the study, we found that $7.5\;{\mu}g/mL$ UDCA was effective in the protection of cells from $H_2O_2$ damage, a reactive oxygen, and the resuIt was coincided with the anti-apoptotic effect in DAPI staining. Moreover, the metal-catalyzed oxidation study showed that UDCA has antioxidant effect as much as ascorbic acid at $50{\sim}100\;{\mu}g/mL$. In conclusion, these study results suggested that neuro-degenerative diseases such as Alzheimer's disease probably caused by over-expressed beta amyloid peptide in elderly people can be controled by UDCA through an anti-inflammatory, anti-oxidative and anti-apoptotic effect. The evidences showed in the study may be references for more in-depth in vivo and clinical studies for a candidate of anti-neurodegenerative therapy in the near future.

퇴행성뇌질환인 치매의 정확한 원인은 아직 불분명하나 빠른 뇌세포사멸이 주요한 원인으로 알려져 있다. 특히, 알츠하이머형 치매는 다량 생성되는 활성산소에 의한 뇌세포사멸이 주요원인인 것으로 입증되고 있다. 따라서 본 연구에서는 웅담활성성분인 UDCA의 세포보호 및 항산화효과로부터 알츠하이머형 치매와 같은 퇴행성 뇌질환억제 또는 치료물질로서의 가능성을 입증하고자 하였고 뇌의 대식세포인 소교세포(microglia)를 cell model로 하였다. MTT 실험결과 UDCA에 의한 세포보호효과는 $7.5\;{\mu}g/mL$ 주변 농도에서 관찰되었고 NO에 의한 세포손상 유도억제효과를 확인하였다(Fig. 2). 이와 같은 결과는 형광현미경하에서 보다 명확히 관찰되어(Fig. 3) 결국 UDCA에 의한 항세포사효과가 있음을 알 수 있었다. UDCA의 항산효과는 활성산소인 $H_2O_2$의 단백질 분해 저해능을 관찰하는 금속이온촉매 산화효과를 통해 확인하였다(Fig. 4). 즉, UDCA는 농도의존적으로$(1{\sim}100\;{\mu}g/mL)$ 단백질 분해억제능을 보였으며 $100\;{\mu}g/mL$ 이상의 농도에서 양성대조군인 ascorbic acid와 유사한 억제효과를 나타냈다. 이와 같은 UDCA의 항산화효과는 $10\;{\mu}g/mL$ 전후에서 관찰되어 세포보호효과를 나타내는 농도$(7.5\;{\mu}g/mL)$와 큰 차이가 없는 것으로 사료되었고 따라서 UDCA의 농도범주는 일괄적 적용이 가능할 것으로 판단된다. 결론적으로 웅담활성성분인 UDCA는 일반적으로 사용하여온 간질환 및 소화계질환의 보조요법제의 개념을 벗어나 항염 및 항산화효과에 잠재능을 가지며 나아가 뇌신경세포를 보호하고 세포사를 차단하여 알츠하이머와 같은 퇴행성뇌질환 조절 후보물질로 적용이 가능할 것으로 판단되나 보다 심도 있는 in vivo 및 임상적 차원의 연구가 요구된다.

Keywords

References

  1. Southorn PA, Powis G. Free radicals in medicine. II. Involvement in human. Mayo Clin. Proc. 63: 390-408 (1988)
  2. Hu F, LU R, Ming L. Free radical scavenging activity of extracts prepared from fresh leaves of selected chinese medical plants. Fitoterapia 75: 14-23 (2004) https://doi.org/10.1016/j.fitote.2003.07.003
  3. Kim SM, Cho YS, Sung SK. The antioxidant ability and nitrite scavenging ability of plant extracts. Korean J. Food Sci. Technol. 33:626-632(2001)
  4. Montine TJ, Diana NM, Quinn JF, Beal MF, Markesbery WR, Roberts LJ, Morrow JD. Lipid peroxidation in aging brain and Alzheimer's disease. Free Radic. Biol. Med. 33: 620-626 (2002) https://doi.org/10.1016/S0891-5849(02)00807-9
  5. Floyd RA, Hensley K. Oxidative stress in brain aging: Implications for therapeutics of neurodegenerative diseases. Neurobiol. Aging 23: 759-807 (2002)
  6. Yamaguchi S, Qian ZZ, Nohara T. Bile acids of Fel Ursi. Chem Pharm Bull (Tokyo) 46: 1653-1655 (1998) https://doi.org/10.1248/cpb.46.1653
  7. Zhang HY, Chen YD, Zhuang, G.L. Pharmacological action of bear bile extract in mice. Chinese Trad. Herb. Drugs 27: 10-12 (1996)
  8. Jin ZG, Zhang TY, Liang WB, Liang CG. Effects of bear bile injection on blood lipid. Chinese Trad. Herb. Drugs 28: 4-5 (1997)
  9. Kavamura T, Koiaumi F, Ishimori A. Effect of ursodeoxycholic acid on water immersion restraint stress ulcer of rats. Nippon Shokakibyo Gakkai Zasshi 86: 2373-2378 (1989)
  10. Cho TS, Lee SM, Yeom JH, Yu EJ, Lim SW, Jang BS, Kim YH, Yu YM, Park Mil. Anti-stress effects of ursodeoxycholic acid on the restraint stress in rats. Yakhak Hoeji 39: 548-553 (1995)
  11. Cho TS, Lee JC, Cho SI, Lee SM. A study on anti-stress activities of cholic acid derivatives. J. Appl. Pharmacol. 6: 232-241 (1998)
  12. Rodrihues CM, Ma X, Linehan-Stieers C, Fan G, Kren BT, Steer CJ. Ursodeoxycholic acid prevents cytochrome c release in apoptosis by inhibiting mitochondrial membrane depolarization and channel formation. Cell Death Differ. 6: 842-854 (1999) https://doi.org/10.1038/sj.cdd.4400560
  13. Selkoe DJ. Alzheimer's disease: genes, proteins, and therapy. Physiol. Rev. 81: 741-766 (2001) https://doi.org/10.1152/physrev.2001.81.2.741
  14. Petrova TV, Akama KT, Van Eldik LJ. Selective modulation of BV-2 microglial activation by prostaglandin E(2). Differential effects on endotoxin-stimulated cytokine induction. J. Biol. Chem. 274: 28823-28827 (1999) https://doi.org/10.1074/jbc.274.40.28823
  15. Kim WK, Jang PG, Woo MS, Han IO, Piao HZ, Lee K, Lee H, Joh TH, Kim HS. A new anti-inflammatory agent KL-1037 represses proinflammatory cytokine and inducible nitric oxide synthase (iNOS) gene expression in activated microglia. Neuropharmacology 47: 243-252 (2004) https://doi.org/10.1016/j.neuropharm.2004.03.019
  16. Min KJ, Pyo HK, Yang MS, Ji KA, Jou I, Joe EH. Gangliosides activate microglia via protein kinase C and NADPH oxidase. Glia 1548: 197-206 (2004)
  17. Joo SS, Won TJ, Lee DI. Potential role of ursodeoxycholic acid in suppression of nuclear factor kappa B in microglial cell line (BV-2). Arch. Pharm. Res. 27: 954-960 (2004) https://doi.org/10.1007/BF02975850
  18. Joo SS, Won TJ, Hwang KW, Lee DJ. Inhibition of iNOS expression via ursodeoxycholic acid in murine microglial cells, BV-2 cell line. Immune Network 5: 45-49 (2005) https://doi.org/10.4110/in.2005.5.1.45
  19. Stevens MG and Oslen Sc. Comparative analysis of using MTT and XTT in colorimetric assays for quantitative bovine neutrophil bactericidal activity. J. Immunol. Meth. 157: 225-231 (2001)
  20. Kocha T, Yamaguchi M, Ohtaki H, Fukuda T, Aoyagi T. Hydrogen peroxide-mediated degradation of protein: different oxidation modes of copper- and iron-dependent hydroxyl radicals on the degradation of albumin. Biochem. Biophys. Acta. 1337: 319-326 (1997) https://doi.org/10.1016/S0167-4838(96)00180-X
  21. Mayo JC, Tan DX, Sainz RM, Natarajan M, Lopez-Burillo S, Reiter RJ. Protection against oxidative protein damage induced by metal-catalyzed reaction or alkylperoxyl radicals: comparative effects of melatonin and other antioxidants. Biochem. Biophys. Acta. 1620: 139-150 (2003) https://doi.org/10.1016/S0304-4165(02)00527-5
  22. Kim YS, Han JA, Cheong TB, Ryu JC, Kim JC. Protective effect of heat shock protein 70 against oxidative stresses in human corneal fibroblasts. J. Korean Med. Sci. 194: 591-597 (2004)