• Title/Summary/Keyword: motor speed controller

Search Result 1,299, Processing Time 0.024 seconds

Torque Ripple Reduction Method in a Sensorless Drive for BLDC Motor (브러시리스 직류전동기용 센서리스 드라이브의 토크 맥동 저감 방법)

  • Lee, Kwang-Woon;Kim, Dae-Kyong;Kim, Tae-Duk
    • Proceedings of the KIEE Conference
    • /
    • 2003.07b
    • /
    • pp.1087-1089
    • /
    • 2003
  • This paper presents a method to reduce commutation torque ripple in a sensorless brushless DC motor drive without current sensors. To compensate the commutation torque ripple completely, the duration of commutation must be known. The proposed method measures the duration of commutation from terminal voltage waveforms, calculates a PWM duty ratio to suppress the commutation torque ripple from the output of speed controller, and applies the calculated PWM duty ratio only during the commutation. Experimental results show that vibrations are considerably reduced when the proposed method is applied to the sensorless brushless DC moter drive for air-conditioner compressor.

  • PDF

Torque Ripple Minimization in Switched Reluctance Motor Drives Considering Magnetic Saturation (자기포화를 고려한 SRM의 토크리플 저감 제어)

  • Kang, Junho;Kim, Jaehyuck
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.28 no.7
    • /
    • pp.48-54
    • /
    • 2014
  • This paper discusses study of torque ripple minimization employing an improved TDF(torque distribution function)-based instantaneous torque control to reduce acoustic noise and vibration problem of the SRM. As the flux linkage of the SRM is a nonlinear function of phase current and rotor position, design of optimal controller for the SRM is quite complicated. Hence, an accurate mathematical model considering the nonlinearity of the SRM is required. An improved TDF based torque control has been proposed in order to reduce the toque ripple at high speed operation. Dynamic simulation using Matlab/Simulink as well as Finite Element Analysis is presented. A prototype SRM for electric vehicle traction has been manufactured to validate the experimental results comparing the dynamic simulation results.

A Study on Speed Variable Proportional Resonant Current Controller of Single-Phase PMSM (단상 영구자석 동기전동기의 속도 가변형 비례공진 전류제어에 관한 연구)

  • Lee, Won-Seok;Hwang, Seon-Hwan;Park, Jong-Won
    • Journal of IKEEE
    • /
    • v.24 no.4
    • /
    • pp.954-960
    • /
    • 2020
  • This paper proposes a speed variable proportional resonant current control method for a single-phase permanent magnet synchronous motor(PMSM). Due to the electromagnetic characteristics of a single-phase PMSM, negative and zero torques are generated in the part corresponding to the phase difference between the stator current and the back electromotive force. In addition, overcurrent limitation is required because of the low stator resistance and inductance in sensorless operation. When using the vector control for current control of single-phase PMSM under these conditions, processes of coordinate transformation, inverse coordinate transformation, and generation of virtual dq-axis components are required. However, the proposed variable speed proportional resonant current control method does not need the coordinate transformation used for AC motors. In this paper, we have confirmed stable maneuverability by using variable proportional resonant current control algorithm, and proposed sensorless control based on a mathematical model of a single-phase PMSM without a position sensor when reaching a constant speed. The usefulness of the current control method was verified through several experiments.

Low Cost Speed Control System of PM Brushless DC Motor Using 2 Hall-ICs (2Hall-ICs를 이용한 저가형 PM Brushless DC Motor 속도 제어)

  • 윤용호;우무선;김덕규;원충연;최유영
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.9 no.4
    • /
    • pp.311-318
    • /
    • 2004
  • Generally, PM BLDC drive system is necessary that the three Hall-ICs evenly be distributed around the stator circumference and encoder installed in case of the 3 phase motor. The Hall-ICs are set up in this motor to detect the main flux from the rotor. So the output signal from Hall-ICs is used to drive a power transistor to control the stator winding current. Instead of using three Hall-ICs and encoder, this paper uses only two Hall-ICs for the permanent magnet rotor position and for the speed feedback signals, and uses a micro controller of 16-bit type(80C196KC) with the 3 phase PM BLDC whose six stator and two rotor designed. Two Hall-IC Hc and $H_B$ are placed on the endplate at 120 degree phase difference. With these elements, we estimate information of the other phase in sequence through a rotating rotor.

A Sensorless Speed Control of Cylindric;31 Permanent Magnet Synchronous Motor using an Adaptive Integral Binary Observer (적응 적분바이너리 관측기를 이용한 원통형 영구자석 동기전동기의 센서리스 속도제어)

  • 최양광;김영석;한윤석
    • The Transactions of the Korean Institute of Electrical Engineers B
    • /
    • v.53 no.3
    • /
    • pp.152-163
    • /
    • 2004
  • This paper presents a sensorless speed control of cylindrical permanent magnet synchronous motors(PMSM) using an adaptive integral binary observer In view of composition with a main loop regulator and an auxiliary loop regulator, the binary observer has a property of the chattering alleviation in the constant boundary layer. However, the steady state estimation accuracy and robustness are dependent upon the width of the constant boundary. In order to improve the steady state performance of the binary observer, the binary observer is formed by adding extra integral dynamics to the switching hyperplane equation. With the help of integral characteristic, the rotor speed can be finely estimated and utilized for a sensorless speed controller for PMSM. Since the Parameters of the dynamic equations such as machine inertia or a viscosity friction coefficient are lot well known, there are many restrictions in the actual implementation. The proposed adaptive integral binary observer applies an adaptive scheme so that observer may overcome the problem caused by using the dynamic equations and the rotor speed is constructed by using the Lyapunov function. The observer structure and its design method are described. The experimental results of the proposed algorithm are presented to demonstrate the effectiveness of the approach.

Design of Cone-Shaped Magnetic Bearing Spindle System for High Speed Internal Grinding Machine (내면연삭기 고속 주축용 원추형 자기베어링시스템 설계)

  • Park, Jong-Gwon;No, Seung-Guk;Gyeong, Jin-Ho
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.19 no.2
    • /
    • pp.213-219
    • /
    • 2002
  • A cone-shaped active magnetic healing spindle system for high speed internal grinding with built-in motor that has 7.5kW power and maximum rotational speed of 50,000 rpm is designed and built. Using cone-shaped AMB(Active Magnetic Bearing) system, the axial rotor dick and magnets of conventional 5-axis actuating design can be eliminated. so this concept of design provides a simple magnetic bearing system. In this paper, the cone-shaped electromagnets are designed by magnetic circuit theory, and a de-coupled direct feedback PID controller is applied to control the coupled magnetic bearings. The designed crone-shaped AMB spindle system is built and constructed with a digital control system, which has TMS320C6702 DSP, 16 bit AD/DA, switching power amplifier and gap sensors. As the AMB system provides high damping ratio eliminating overshoot and resonance speed, this spindle runs up to 40,000 rpm stably with about 5${\mu}{\textrm}{m}$ of runout.

A Control Algorithm for Highly Efficient Operation of Auxiliary Power Unit in a Series Hybrid Electric Bus (직렬형 하이브리드 버스에서 보조동력장치의 고효율 작동을 위한 제어 알고리즘)

  • 함윤영;송승호;민병문;노태수;이재왕;이현동;김철수
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.11 no.5
    • /
    • pp.170-175
    • /
    • 2003
  • A control algorithm is developed for highly efficient operation of auxiliary power unit (APU) that consists of a diesel engine and a directly coupled induction generator in series hybrid electric Bus (SHEB). In a series hybrid configuration the APU supplies the electric power needed for maintaining the state of charge (SOC) of the battery unit in various conditions of vehicle operation. As the rotational speed of generator does not depend on the vehicle speed, an optimized operation of engine-generator unit based on the efficiency map of each component can be achieved. The output torque of diesel engine can be controlled by the amount of fuel injection, and the power converted from mechanical to electrical energy can be adjusted by generate control unit (GCU) using the decoupling vector control of torque and flux. As for the given reference of the generating power, the multiply of speed and torque, many combinations of operating speed and torque are possible. The algorithm decides the new operating point based on the engine efficiency map and generator characteristic curve. During the transition of operating points, the speed controller saturation is avoided using variable limit and filtering of generator torque reference. A test rig and SHEB consist of a 1.5L diesel engine and a 30kw induction generator are constructed by Hyundai Motor Company.

A Study on Position Control for Large Inertia System (대형 회전구조물의 정밀위치제어에 관한 연구)

  • Choi, Young-Ho;Eo, Jin-Woo;Lee, Dae-Sik
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.2 no.1
    • /
    • pp.72-81
    • /
    • 1985
  • This paper deals with the Z-8000 microprocessor based optimal controller problem of large rotating system. Control algorithm consists of Global Mode and Fine Mode. In Global Mode, motor is driven with maximum torque, while, in Fine Mode, the speed of response and overshoot improved by multi-gains. Friction term of the plant was measured in the 1-st test, jerking effect by the nonlinearity of friction was compensated in the 2-nd test and the 3-rd test was carried out to finalize the control system model. Test results show that the speed of response and overshoot are highly improved.

  • PDF

A Study on the Linear Encoder for the high performance Oil Off Angle control of SRM (SRM의 고성능 온, 오프 각 제어를 위한 선형 엔코더에 관한 연구)

  • 이동희;박성준;이명재;한성현;백운보;이희섭
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 2002.04a
    • /
    • pp.190-198
    • /
    • 2002
  • In switched reluctance motor(SRM) drive, it is necessary to synchronize the stator phase excitation with the rotor position. Therefore the rotor position information is an essential. Usually optical encoders or resolvers are used to provide the rotor position information. These sensors are expensive and are not suitable for high speed operation. In general, the accuracy of the switching angles is dependent upon the resolution of the encoder and the sampling period of the microprocessor. But the region of high speed, switching angles are fluctuated back and forth from the preset values, witch are cause by the sampling period of the microprocessor. Therefore, the low cost linear encoder suitable for the practical and stable SRM drive is proposed and the control algorithm to provide the switching signals using the simple digital logic circuit is also presented in this paper It is verified from the experiments that the proposed encoder and logic controller can be a powerful candidate for the practical low cost SRM drive.

  • PDF

Performance Characteristics of Electric Powertrain Parts for Power Split Type HEV at Steady Speed (Power Split Type HEV 차량 정속주행시 전기동력부품 성능특성)

  • Kim, Chai-Won
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.15 no.2
    • /
    • pp.182-186
    • /
    • 2007
  • This paper studied performance characteristics of hybrid automotive to replace existing fossil fuel vehicles. Specially, about power split type HEV that is T-HEV's drive system when a vehicle drives at steady speed, monitored both output of each engine, motor and generator and battery SOC (state of charge) and analyzed performance characteristic of power transmission system and electricity power parts. This study shows those that acquired and analyzed information from signals between HCU and each controller of actual T- vehicle. From this study, it is confirmed that each conditions of EV and HEV drive can be a improvement with respect to the fuel efficiency of vehicles.