• Title/Summary/Keyword: motion dynamics

Search Result 1,341, Processing Time 0.028 seconds

Self-similarity in the equation of motion of a ship

  • Lee, Gyeong Joong
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • v.6 no.2
    • /
    • pp.333-346
    • /
    • 2014
  • If we want to analyze the motion of a body in fluid, we should use rigid-body dynamics and fluid dynamics together. Even if the rigid-body and fluid dynamics are each self-consistent, there arises the problem of self-similar structure in the equation of motion when the two dynamics are coupled with each other. When the added mass is greater than the mass of a body, the calculated motion is divergent because of its self-similar structure. This study showed that the above problem is an inherent problem. This problem of self-similar structure may arise in the equation of motion in which the fluid dynamic forces are treated as external forces on the right hand side of the equation. A reconfiguration technique for the equation of motion using pseudo-added-mass was proposed to resolve the self-similar structure problem; specifically for the case when the fluid force is expressed by integration of the fluid pressure.

Real time control of a mobile robot considering dynamics (3축 이동로보트의 동역할을 고려한 실시간 제어)

  • Cha, Y.Y.;Gweon, D.G.
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.10 no.4
    • /
    • pp.190-199
    • /
    • 1993
  • In this study a three-axes mobile robot which has two independently controlled driving wheels and a function of simultaneously steering the driving wheels has been developed. Two-motion modes of the mobile robot, the first is a differential velocity motion of two driving wheels and the second is a equal driving and steering motion, have been analyzed and the kinematic and dymanic analyses about the each motion mode have been carried out. As a result of dynamic analysis, the torque used on a motor control and acceleration have been derived explicitly. Hence, a computation time is saved effectively and a real time control of the mobile robot considering the dynamics has become possible. Through a simulation the results considering the dynamics have been compared with that no regarding the dynamics and the possibility of real-time control has been proved.

  • PDF

Development for Tilting Train Dynamics Motion Base

  • Song, Yong-Soo;Shin, Seung-Kwon;Kim, Jung-Seok;Ho, Seong
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2004.08a
    • /
    • pp.1158-1161
    • /
    • 2004
  • This paper describes the construction of a half sphere screen driving tilting simulator that can perform six degree-of-freedom (DOF) motions simulator to a tilting train. The mathematical equations of Tilting Train dynamics are first derived from the 6-DOF bicycle model and incorporated with the bogie, carbody, and suspension subsystems. The equations of motion are then programmed by visual C++ code. To achieve the simulator functions, a motion platform that is constructed by six electric-driven actuators is designed, and its kinetics/inverse kinetics analysis is also conducted. Driver operation signals such as carbady angle, accelerator, and tilting positions are measured to trigger the Tilting dynamics calculation and further actuate the cylinders by the motion platform control program. In addition, a digital PID controller is added to achieve the stable and accurate displacements of the motion platform. The experiments prove that the designed simulator is adequate in performing some special rail road driving situations discussed in this paper.

  • PDF

Dynamics Modeling and Simulation of Korean Communication, Ocean, and Meteorology Satellite

  • No, Tae-Soo;Lee, Sang-Uk;Kim, Sung-Ju
    • International Journal of Aeronautical and Space Sciences
    • /
    • v.8 no.2
    • /
    • pp.89-97
    • /
    • 2007
  • COMS(Communication, Oceanography, and Meteorology Satellite) is the first Korean multi-purpose satellite which is planned to be deployed at the altitude of geosynchronous orbit above the Korean peninsular. Noting that COMS is composed of the main BUS structure, two deployable solar panels, one yoke, five reactions wheels, COMS is treated as a collection of 9 bodies and its nonlinear equations of motion are obtained using the multi-body dynamics approach. Also, a computer program is developed to analyze the COMS motion during the various mission phase. Quite often, the equations of motion have to be derived repeatedly to reflect the fact that the spacecraft dynamics change as its configuration, and therefore its degree of freedom varies. However, the equations of motion and simulation software presented in this paper are general enough to represent the COMS dynamics of various configurations with a minimum change in input files. There is no need to derive the equations of motion repeatedly. To show the capability of the simulation program, the spacecraft motion during the solar array partial and full deployment has been simulated and the results are summarized in this paper.

Inertial Motion Sensing-Based Estimation of Ground Reaction Forces during Squat Motion (관성 모션 센싱을 이용한 스쿼트 동작에서의 지면 반력 추정)

  • Min, Seojung;Kim, Jung
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.32 no.4
    • /
    • pp.377-386
    • /
    • 2015
  • Joint force/torque estimation by inverse dynamics is a traditional tool in biomechanical studies. Conventionally for this, kinematic data of human body is obtained by motion capture cameras, of which the bulkiness and occlusion problem make it hard to capture a broad range of movement. As an alternative, inertial motion sensing using cheap and small inertial sensors has been studied recently. In this research, the performance of inertial motion sensing especially to calculate inverse dynamics is studied. Kinematic data from inertial motion sensors is used to calculate ground reaction force (GRF), which is compared to the force plate readings (ground truth) and additionally to the estimation result from optical method. The GRF estimation result showed high correlation and low normalized RMSE(R=0.93, normalized RMSE<0.02 of body weight), which performed even better than conventional optical method. This result guarantees enough accuracy of inertial motion sensing to be used in inverse dynamics analysis.

A Numerical Study on the Coupled Dynamics of Ship and Flooding Water (선박 운동과 내부 유동의 연성 운동에 관한 수치해석 연구)

  • Hong, Sa-Young;Kim, Jin;Park, Il-Ryong;Choi, Seok-Kyu
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.43 no.6 s.150
    • /
    • pp.631-637
    • /
    • 2006
  • This paper presents a numerical method to solve the ship motion coupled with internal fluid flow. Physically the internal fluid motion is coupled with the ship motion. Hitherto the previous numerical results of the coupled motion predict only the general tendency with experiments. The main reason of inaccuracy is that the coupled dynamics of ship motion and internal water motion is not accurately accounted. In this study CFD technique based on VOF is employed for the accurate analysis of flooding water motion. Some cases of the 24th ITTC stability committee's benchmark.study for tanker with internal fluid are analyzed by coupling the ship motion and sloshing dynamics. The calculated ship motion is compared with the experimental result to validate the coupled scheme and is in agreement with the experimental result.

Chaotic Dynamics in Tobacco's Addiction Model

  • Bae, Youngchul
    • International Journal of Fuzzy Logic and Intelligent Systems
    • /
    • v.14 no.4
    • /
    • pp.322-331
    • /
    • 2014
  • Chaotic dynamics is an active area of research in biology, physics, sociology, psychology, physiology, and engineering. This interest in chaos is also expanding to the social scientific fields such as politics, economics, and argument of prediction of societal events. In this paper, we propose a dynamic model for addiction of tobacco. A proposed dynamical model originates from the dynamics of tobacco use, recovery, and relapse. In order to make an addiction model of tobacco, we try to modify and rescale the existing tobacco and Lorenz models. Using these models, we can derive a new tobacco addiction model. Finally, we obtain periodic motion, quasi-periodic motion, quasi-chaotic motion, and chaotic motion from the addiction model of tobacco that we established. We say that periodic motion and quasi-periodic motion are related to the pre-addiction or recovery stage, respectively. Quasi-chaotic and chaotic motion are related to the addiction stage and relapse stage, respectively.

On-line Motion Synthesis Using Analytically Differentiable System Dynamics (분석적으로 미분 가능한 시스템 동역학을 이용한 온라인 동작 합성 기법)

  • Han, Daseong;Noh, Junyong;Shin, Joseph S.
    • Journal of the Korea Computer Graphics Society
    • /
    • v.25 no.3
    • /
    • pp.133-142
    • /
    • 2019
  • In physics-based character animation, trajectory optimization has been widely adopted for automatic motion synthesis, through the prediction of an optimal sequence of future states of the character based on its system dynamics model. In general, the system dynamics model is neither in a closed form nor differentiable when it handles the contact dynamics between a character and the environment with rigid body collisions. Employing smoothed contact dynamics, researchers have suggested efficient trajectory optimization techniques based on numerical differentiation of the resulting system dynamics. However, the numerical derivative of the system dynamics model could be inaccurate unlike its analytical counterpart, which may affect the stability of trajectory optimization. In this paper, we propose a novel method to derive the closed-form derivative for the system dynamics by properly approximating the contact model. Based on the resulting derivatives of the system dynamics model, we also present a model predictive control (MPC)-based motion synthesis framework to robustly control the motion of a biped character according to on-line user input without any example motion data.

Integrated dynamics modeling for supercavitating vehicle systems

  • Kim, Seonhong;Kim, Nakwan
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • v.7 no.2
    • /
    • pp.346-363
    • /
    • 2015
  • We have performed integrated dynamics modeling for a supercavitating vehicle. A 6-DOF equation of motion was constructed by defining the forces and moments acting on the supercavitating body surface that contacted water. The wetted area was obtained by calculating the cavity size and axis. Cavity dynamics were determined to obtain the cavity profile for calculating the wetted area. Subsequently, the forces and moments acting on each wetted part-the cavitator, fins, and vehicle body-were obtained by physical modeling. The planing force-the interaction force between the vehicle transom and cavity wall-was calculated using the apparent mass of the immersed vehicle transom. We integrated each model and constructed an equation of motion for the supercavitating system. We performed numerical simulations using the integrated dynamics model to analyze the characteristics of the supercavitating system and validate the modeling completeness. Our research enables the design of high-quality controllers and optimal supercavitating systems.

Motion Performance Prediction and Experiments of an Autonomous Underwater Vehicle through Fluid Drag Force Calculations (유체항력 계산을 통한 자율무인잠수정의 운동성능 예측과 실험)

  • Kim, Chang Min;Baek, Woon Kyung
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.39 no.6
    • /
    • pp.614-619
    • /
    • 2015
  • In this study, a dynamics model was developed to predict the motion performance of an Autonomous Underwater Vehicle (AUV). The dynamics model includes basic dynamic state variables of the hull and force terms to determine the motion of the AUV. The affecting terms for the forces are hydrostatic force, added mass, hydrodynamic damping, lift and drag forces. The force terms can be calculated using analytical and Computational Fluid Dynamics methods. For the underwater motion simulation, a simple PD controller was used. Also, the AUV was tested in a water tank and near sea for the partial verification of the fluid drag force coefficients and way-point tracking motions.