• Title/Summary/Keyword: motion controller

Search Result 1,231, Processing Time 0.025 seconds

Smart Actuator-Control System Design Using Shape Memory Alloys (형상기억합금 응용 스마트 액추에이터-제어기 설계)

  • Kim, Youngshik;Jang, Tae-soo
    • Journal of Digital Contents Society
    • /
    • v.18 no.7
    • /
    • pp.1451-1456
    • /
    • 2017
  • In this research we discuss an integrated actuator-control system for advanced control of a smart Shape Memory Alloy (SMA) actuator. Toward this goal, we designed and fabricated an actuator-control module combining two SMA actuating units with a single-chip microprocessor, two different sensing elements, and an actuator driver. In our proposed system, sensing elements include a 6-axis single-chip motion sensor for orientation measurement and a circuit for resistance measurement of SMA wires. We experimentally verified our proposed actuator-control system using actuator driving, sensor data readings, and communication tests.

Development of universal controller module using electromyogram signal (근전도 신호를 이용한 범용제어기 모듈)

  • Lee, Chung-Heon;Yu, Jae-Jun;Bae, Sung-Ho;Kang, Sung-Chul;Lee, Dong-Hoon
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2011.05a
    • /
    • pp.478-480
    • /
    • 2011
  • As the recent games industry grows slowly, the consumers come to have interests in new types of games which has different types from the conventional games. While the conventional games play with a simple interfaces such as a joystick and buttons, the new games are designed to have acceleration sensors, infrared sensors and video motion detection sensing using several types of sensors and allow users to play more actively. In this paper, we propose a method which uses the electromyogram(EMG) signals in interface.

  • PDF

Multi-body Dynamics and Position Control Simulation for 2-Axes Gimbals in Naval Shipboard (함정용 2축 안정화 장치의 다물체 동역학 및 위치 제어 해석)

  • Yun, Chan-Shik;Ku, Ki-Young;Kim, Sang-Ik;Jeon, Hee-Ho;Lee, Seung-Joon;Byun, Gi-Sig
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.13 no.2
    • /
    • pp.330-340
    • /
    • 2009
  • A naval shipboard inevitably movies in a pitch and roll direction under the influence of wave and wind in the sea. As a result, the shipboard gets in a continuous turning motion back/front and right/left. And the shipboard is also constantly exposed to many different kinds of disturbance signals including the vibrations of various frequencies from the internal equipments and their vibrations, strong waves, and impact from explosion. This paper formulates multi-body dynamic models similar to an actual system and simulates the pitch/roll positions of a 2-axes gimbals with PI controller for consecutive behavior of a naval shipboard including disturbance.

Structure-Control Combined Design with Structure Intensity

  • Park, Jung-Hyen;Kim, Soon-Ho
    • International Journal of Ocean Engineering and Technology Speciallssue:Selected Papers
    • /
    • v.6 no.1
    • /
    • pp.60-68
    • /
    • 2003
  • This paper proposes an optimum design method of structural and control systems, using a 2-D truss structure as an example. The structure is subjected to initial static loads and disturbances. For the structure, a FEM model is formed. Using modal transformation, the equation of motion is transformed into modal coordinates, in order to decrease D.O.F. of the FEM model. To suppress the effect of the disturbances, the structure is controlled by an output feedback $H_{\infty}$ controller. The design variables of the combined optimal design of the control-structure systems are the cross sectional areas of truss members. The structural objective function is the structural weight. The control objective function is the $H_{\infty}$ norm, the performance index of control. The second structural objective function is the energy of the response related to the initial state, which is derived from the time integration of the quadratic form of the state in the closed-loop system. In a numerical example, simulations have been perform. Through the consideration of structural weight and $H_{\infty}$ norm, an advantage of the combined optimum design of structural and control systems is shown. Moreover, since the performance index of control is almost nearly optimiz, we can acquire better design of structural strength.

  • PDF

A Study on the Hydraulic System Circuit Analysis and Modeling of the Hydrostatic Tire Roller (유압 구동방식 타이어 롤러를 위한 유압 시스템 회로분석 및 모델링에 관한 연구)

  • Kim, Sang-Gyum;Park, Chun-Shic;Kim, Jung-Ha
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.27 no.4
    • /
    • pp.432-439
    • /
    • 2003
  • In this research, we are trying to develop the new hydraulic driven tire roller which is conventionally operated by mechanical transmission system. The reason why we would like to develop it is that tire roller is one of the most useful machine for the road construction site and also imported totally from overseas. In this paper, we conceptualize the new hydraulic system and derive the equations of motion for dynamic analysis. And we investigate system modeling by using DAQ system. Finally, we will design the controller, which can manage the hydraulic circuit of steering and traction mechanism system. The advent of modern high-speed computers coupled with the application of high-fidelity simulation technology can be used to create “virtual prototypes of construction equipment. Tests conducted on these virtual prototypes may be used to augment actual machine testing, thereby lowering costs and shortening time to production. So, we studied tire roller to integrate development technology. In System Analysis, We formulate hydraulic driving system model and hydraulic steering system model. Also, We integrate DAQ system to acquire experimental result in real tire roller equipment.

Automatic Multileaf Collimation Quality Assurance for IMRT using Electronic Portal Imaging

  • Jin, Ho-Sang;Jason W. Sohn;Suh, Tae-Suk
    • Proceedings of the Korean Society of Medical Physics Conference
    • /
    • 2002.09a
    • /
    • pp.305-308
    • /
    • 2002
  • More complex radiotherapy techniques using multi leaf collimation(MLC) such as intensity-modulated radiation therapy(IMRT) has been increasing the significance of verification of leaf position and motion. Due to the reliability and robustness, quality assurance(QA) of MLC is usually performed with portal films. However, the advantage of ease of use and capability of providing digital data of electronic portal imaging devices(EPIDs) have attracted many attentions as alternatives of films for routine quality assurance in spite of the concerns about their clinical feasibility, efficacy, and the cost to benefit ratio. In our work, the method of routine QA of MLC using electronic portal imaging(EPI) was developed. The verification of availability of EPI images for routine QA was performed by comparison with those of the portal films which were simultaneously obtained when radiation was delivered and known prescription input to MLC controller. Specially designed test patterns of dynamic MLC were applied to image acquisition. Quantitative off-line analysis using edge detection algorithm enhanced the verification procedure in addition to on-line qualitative visual assessment. In conclusion, the EPI is available enough for routine QA with the accuracy of portal films.

  • PDF

Admittance Model-Based Nanodynamic Control of Diamond Turnning Machine (어드미턴스 모델을 이용한 다이아몬드 터닝머시인의 극초정밀 제어)

  • 정상화;김상석
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1996.04a
    • /
    • pp.49-52
    • /
    • 1996
  • The control of diamond turning is usually achieved through a laser-interferometer feedback of slide position. The limitation of this control scheme is that the feedback signal does not account for additional dynamics of the tool post and the material removal process. If the tool post is rigid and the material removal process is relatively static, then such a non-collocated position feedback control scheme may surfice. However, as the accuracy requirement gets tighter and desired surface contours become more complex, the need for a direct tool-tip sensing becomes inevitable. The physical constraints of the machining processprohibit any reasonable implementation of a tool-tip motion measurement. It is proposed that the measured force normalto the face of the workpice can be filterd through an appropriate admittance transfer function to result in the estimated depth of cut. This can be compared to the desired depth of cut to generate the adjustment cotnrol action in addition to position feedback control. In this work, the design methodology on the admittance model-based control with a conventional controller is presented. Based on the empirical data of the cutting dynamics, simulation results are shown.

  • PDF

Time delay study for semi-active control of coupled adjacent structures using MR damper

  • Katebi, Javad;Zadeh, Samira Mohammady
    • Structural Engineering and Mechanics
    • /
    • v.58 no.6
    • /
    • pp.1127-1143
    • /
    • 2016
  • The pounding phenomenon in adjacent structures happens in severing earthquakes that can cause great damages. Connecting neighboring structures with active and semi-active control devices is an effective method to avoid mutual colliding between neighboring buildings. One of the most important issues in control systems is applying online control force. There will be a time delay if the prose of producing control force does not perform on time. This paper proposed a time-delay compensation method in coupled structures control, with semi-active Magnetorheological (MR) damper. This method based on Newmark's integration is adopted to mitigate the time-delay effect. In this study, Lyapunov's direct approach is employed to compute demanded voltage for MR dampers. Using Lyapunov's direct algorithm guarantees the system stability to design a controller based on feedback. Because of the strong nonlinearity of MR dampers, the equation of motion of coupled structures becomes an involved equation, and it is impossible to solve it with the common time step methods. In present paper modified Newmark-Beta integration based on the instantaneous optimal control algorithm, used to solve the involved equation. In this method, the response of a coupled system estimated base on optimal control force. Two MDOF structures with different degrees of freedom are finally considered as a numeric example. The numerical results show, the Newmark compensation is an efficient method to decrease the negative effect of time delay in coupled systems; furthermore, instantaneous optimal control algorithm can estimate the response of structures suitable.

Study on dynamic behavior of a new type of two-way single layer lattice dome with nodal eccentricity

  • Satria, Eka;Kato, Shiro;Nakazawa, Shoji;Kakuda, Daisuke
    • Steel and Composite Structures
    • /
    • v.8 no.6
    • /
    • pp.511-530
    • /
    • 2008
  • This paper discusses a feasibility of a new type of two-way system for single layer lattice domes with nodal eccentricity by investigating the dynamic behavior under earthquake motions. The proposed dome is composed of two main arches, intersecting each other with T-joint struts to provide space for tensioning membranes. The main purposes of this study are to calculate the nonlinear dynamic response under severe earthquake motions and to see the possibility of using this new type of two-way system for single layer lattice domes against earthquake motions. The results show that the main arches remain elastic except yielding of the joints of strut members that can be used to absorb some amount of strain energy at strong earthquake motion. Consequently, deformation of the main arches can be reduced and any heavy damages on the main arches can be minimized. A kind of damage-control characteristic appeared in this system may be utilized against severe earthquake motions, showing a possibility of designing a new type of single layer lattice dome.

Performance Evaluation of a Semi-active Vehicle Suspension Using Piezostack Actuator Valve (압전작동기 밸브를 이용한 반능동 차량현가장치의 성능 고찰)

  • Han, Chulhee;Yoon, Gun-Ha;Park, Young-Dai;Choi, Seung-Bok
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.26 no.1
    • /
    • pp.82-88
    • /
    • 2016
  • This paper proposes a new type of semi-active direct-drive valve(DDV) car suspension system using piezoelectric actuator associated with displacement amplifier. As a first step, controllable piezoelectric DDV damper is designed and governing equation of a quarter-vehicle suspension system consisting of sprung mass, spring, tire and the piezostack DDV damper is constructed. After deriving the equations of the motion, in order to control spool displacement and damping force the skyhook controller is designed and applied. The performance evaluation of the proposed semi-active suspension system is conducted with different displacement of spool. Then, the ride comfort analysis is undertaken in time domain with bump road profile.