• Title/Summary/Keyword: motion and limit set

Search Result 14, Processing Time 0.029 seconds

CONTINUITY OF THE ORBITAL AND LIMIT SET MAPS IN GENERAL DYNAMICAL SYSTEMS

  • Lee, Kyung-Bok;Park, Jong-Suh
    • Communications of the Korean Mathematical Society
    • /
    • v.26 no.4
    • /
    • pp.649-660
    • /
    • 2011
  • S. M. Saperstone and M. Nishihama [6] had showed both continuity and stability of the orbital and limit set maps, K(x) and L(x), where K and L are considered as maps from X to $2^X$. The main purpose of this paper is to extend continuity and stability for dynamical systems to general dynamical systems.

Development of a multi-robot control system with sensor integrating capability (센서 통합 능력을 갖는 다중 로보트 제어 시스템의 개발)

  • 서일홍;현웅근;김태원;여희주;김재욱;윤승중
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1992.10a
    • /
    • pp.1008-1013
    • /
    • 1992
  • 본 논문에서는 다중 로보느의 협조제어(Coordinated Control)를 위한 로보트 콘트롤러의 설계에 대해서 연구한다. 첫 부분에서는 다중 로보느의 연구배경 및 연구동기에 대해서 논의하고 이어서 Coordinated Task를 묘사하기 위한 Programming Primiitive Set을 정의하며 구현에 대해서도 논의한다. 특히 Motopn Primitive는 synchronous(Coordinated Motion), Asynchronous Motion, Conditional Motion, 특수 Motion으로 분류하고, 각각의 궤적계획 및 구현에 대해서도 간단히 논의한다. 특히 본 논문에서는 외부의 변화하는 환경에 효과적으로 적응할 수 있게 하기 위하여 Vision센서, Encoder신호와 Limit센서, Force센서 등의 다양한 외부 센서를 융합 처리할수 있는 다중 로보트 제어 시스템을 개발하였다.

  • PDF

PROBABILISTIC SEISMIC ASSESSMENT OF BASE-ISOLATED NPPS SUBJECTED TO STRONG GROUND MOTIONS OF TOHOKU EARTHQUAKE

  • Ali, Ahmer;Hayah, Nadin Abu;Kim, Dookie;Cho, Ung Gook
    • Nuclear Engineering and Technology
    • /
    • v.46 no.5
    • /
    • pp.699-706
    • /
    • 2014
  • The probabilistic seismic performance of a standard Korean nuclear power plant (NPP) with an idealized isolation is investigated in the present work. A probabilistic seismic hazard analysis (PSHA) of the Wolsong site on the Korean peninsula is performed by considering peak ground acceleration (PGA) as an earthquake intensity measure. A procedure is reported on the categorization and selection of two sets of ground motions of the Tohoku earthquake, i.e. long-period and common as Set A and Set B respectively, for the nonlinear time history response analysis of the base-isolated NPP. Limit state values as multiples of the displacement responses of the NPP base isolation are considered for the fragility estimation. The seismic risk of the NPP is further assessed by incorporation of the rate of frequency exceedance and conditional failure probability curves. Furthermore, this framework attempts to show the unacceptable performance of the isolated NPP in terms of the probabilistic distribution and annual probability of limit states. The comparative results for long and common ground motions are discussed to contribute to the future safety of nuclear facilities against drastic events like Tohoku.

Seismic deformation demands on rectangular structural walls in frame-wall systems

  • Kazaz, Ilker
    • Earthquakes and Structures
    • /
    • v.10 no.2
    • /
    • pp.329-350
    • /
    • 2016
  • A parametric study was conducted to investigate the seismic deformation demands in terms of drift ratio, plastic base rotation and compression strain on rectangular wall members in frame-wall systems. The wall index defined as ratio of total wall area to the floor plan area was kept as variable in frame-wall models and its relation with the seismic demand at the base of the wall was investigated. The wall indexes of analyzed models are in the range of 0.2-2%. 4, 8 and 12-story frame-wall models were created. The seismic behavior of frame-wall models were calculated using nonlinear time-history analysis and design spectrum matched ground motion set. Analyses results revealed that the increased wall index led to significant reduction in the top and inter-story displacement demands especially for 4-story models. The calculated average inter-story drift decreased from 1.5% to 0.5% for 4-story models. The average drift ratio in 8- and 12-story models has changed from approximately 1.5% to 0.75%. As the wall index increases, the dispersion in the calculated drifts due to ground motion variability decreased considerably. This is mainly due to increase in the lateral stiffness of models that leads their fundamental period of vibration to fall into zone of the response spectra that has smaller dispersion for scaled ground motion data set. When walls were assessed according to plastic rotation limits defined in ASCE/SEI 41, it was seen that the walls in frame-wall systems with low wall index in the range of 0.2-0.6% could seldom survive the design earthquake without major damage. Concrete compressive strains calculated in all frame-wall structures were much higher than the limit allowed for design, ${\varepsilon}_c$=0.0035, so confinement is required at the boundaries. For rectangular walls above the wall index value of 1.0% nearly all walls assure at least life safety (LS) performance criteria. It is proposed that in the design of dual systems where frames and walls are connected by link and transverse beams, the minimum value of wall index should be greater than 0.6%, in order to prevent excessive damage to wall members.

Dynamic Analysis of Monorail System with Magnetic Caterpillar (자석식 무한궤도를 가진 모노레일의 동역학 해석)

  • Won, Jong-Sung;Tak, Tae-Oh
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.20 no.2
    • /
    • pp.47-55
    • /
    • 2012
  • This work deals with dynamic analysis of a monorail system with magnetic caterpillar where magnets are embedded inside each articulated element of the caterpillar, augmenting traction force of main rubber wheels to climb up slope up to 15 degree grade. Considerations are first given to determine stiffness of the primary and secondary suspension springs in order for the natural frequencies of car body and bogie associated with vertical, pitch, roll and yaw motion to be within generally accepted range of 1-2 Hz. Equations for calculating magnetic force needed to climb up given slope are derived, and a magnetic caterpillar system for 1/6 scale monorail is designed based on the derivation. To assess the hill climbing ability and cornering stability, and make sure smooth operation of the side and vertical guiding wheels which is critical for safety, a multibody model that takes into account of every component level design characteristics of car, bogie, and caterpillar is set up. Through hill climbing simulation and comparison with measurement of the limit slope, the validity of the analysis and design of the magnetic caterpillar system are demonstrated. Also by studying the curving behavior, maximum curving speed without rollover, functioning of lateral motion constraint system, the effects of geometry of guiding rails are studied.

Stability Analysis of Railway Vehicle Featuring MR Damper (MR 댐퍼를 적용한 철도차량의 안정성 해석)

  • Ha, Sung-Hoon;Choi, Seung-Bok;Yoo, Won-Hee
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2008.04a
    • /
    • pp.957-962
    • /
    • 2008
  • This paper presents vibration control performances and stability evaluations of railway vehicle featuring controllable magnetorheological (MR) damper. The MR damper model is developed and then incorporated with the governing equations of motion of the railway vehicle which includes vehicle body, bogie and wheel-set. A cylindrical type of MR damper is devised and its damping force is evaluated by considering fluid viscosity and MR effect. Design parameters are determined to achieve desired damping force level applicable to real railway vehicle. Subsequently, computer simulation of vibration control and stability analysis is performed using Matlab Simulink.

  • PDF

Stability Analysis of Railway Vehicle Featuring MR Damper (MR댐퍼를 적용한 철도차량의 안정성 해석)

  • Ha, Sung-Hoon;Choi, Seung-Bok;You, Won-Hee
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.18 no.7
    • /
    • pp.732-740
    • /
    • 2008
  • This paper presents vibration control performances and stability evaluations of railway vehicle featuring controllable magnetorheological(MR) damper. The MR damper model is developed and then incorporated with the governing equations of motion of the railway vehicle which includes vehicle body, bogie and wheel-set. A cylindrical type of MR damper is devised and its damping force is evaluated by considering fluid viscosity and MR effect Design parameters are determined to achieve desired damping force level applicable to real railway vehicle. Subsequently, computer simulation of vibration control and stability analysis is performed using Matlab Simulink.

Design of aerodynamic stabilizing cables for a cable-stayed bridge during construction

  • Choi, Sung-Won;Kim, Ho-Kyung
    • Wind and Structures
    • /
    • v.11 no.5
    • /
    • pp.391-411
    • /
    • 2008
  • A design procedure of stabilizing cable is proposed using buffeting analysis to stabilize the seesaw-like motion of the free cantilevered structure of a cable-stayed bridge during its construction. The bridge examined is a composite cable-stayed bridge having a main span length of 500 m. Based on the buffeting analysis, the stress in bare structure exceeded the allowable limit and a set of stabilizing cable was planned to mitigate the responses. The most efficient positions of the hold-down stabilizing cables were numerically investigated by means of an FE-based buffeting analysis and the required dimensions and pretension of the stabilizing cables were also calculated. The proposed stabilizing measure would be expected to secure the aerodynamic safety of a cantilevered structure under construction with considerable mitigation of buffeting responses.

Excitonic Energy Transfer of Cryptophyte Phycocyanin 645 Complex in Physiological Temperature by Reduced Hierarchical Equation of Motion

  • Lee, Weon-Gyu;Rhee, Young Min
    • Bulletin of the Korean Chemical Society
    • /
    • v.35 no.3
    • /
    • pp.858-864
    • /
    • 2014
  • Recently, many researches have shown that even photosynthetic light-harvesting pigment-protein complexes can have quantum coherence in their excitonic energy transfer at cryogenic and physiological temperatures. Because the protein supplies such noisy environment around pigments that conventional wisdom expects very short lived quantum coherence, elucidating the mechanism and searching for an applicability of the coherence have become an interesting topic in both experiment and theory. We have previously studied the quantum coherence of a phycocyanin 645 complex in a marine algae harvesting light system, using Poisson mapping bracket equation (PBME). PBME is one of the applicable methods for solving quantum-classical Liouville equation, for following the dynamics of such pigment-protein complexes. However, it may suffer from many defects mostly from mapping quantum degrees of freedom into classical ones. To make improvements against such defects, benchmarking targets with more accurately described dynamics is highly needed. Here, we fall back to reduced hierarchical equation of motion (HEOM), for such a purpose. Even though HEOM is known to applicable only to simplified system that is coupled to a set of harmonic oscillators, it can provide ultimate accuracy within the regime of quantum-classical description, thus providing perfect benchmark targets for certain systems. We compare the evolution of the density matrix of pigment excited states by HEOM against the PBME results at physiological temperature, and observe more sophisticated changes of density matrix elements from HEOM. In PBME, the population of states with intermediate energies display only monotonically increasing behaviors. Most importantly, PBME suffers a serious issue of wrong population in the long time limit, likely generated by the zero-point energy leaking problem. Future prospects for developments are briefly discussed as a concluding remark.

A Study on the tire structure-borne sound (타이어 구조 진동음에 관한 연구)

  • Chi, Chang-Heon
    • The Journal of the Acoustical Society of Korea
    • /
    • v.14 no.2
    • /
    • pp.80-91
    • /
    • 1995
  • A theoretical models has been prepared which describes the noise generated by tire/road interaction for the tire structure-borne sound analysis. The model begin with a set of thin shell equations describing the motion of the belt of a radial ply tire, as drived by Bohm('mechanisms of the belted tire', Igeniur-Archiv, XXXV, 1966). Structural quantities required for these equations are derived from material properties of the tire. The rolling shape of a tire is computed from the steady-state limit of these equations. Vibrational response of the tire is treated by the full dependent shell equations. The force input at the tire/road interface is calculated on the basis of tread geometry and distribution of contact patch pressure. Radiation of noise is calculated by a simpson integral. Using the programs, the effect on noise of various tire design variations is computed and discussed. Trends which lead to quiet tire design are identified.

  • PDF