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CONTINUITY OF THE ORBITAL AND LIMIT SET MAPS IN

GENERAL DYNAMICAL SYSTEMS

Kyung Bok Lee and Jong Suh Park

Abstract. S. M. Saperstone and M. Nishihama [6] had showed both

continuity and stability of the orbital and limit set maps, K(x) and L(x),
where K and L are considered as maps from X to 2X . The main purpose
of this paper is to extend continuity and stability for dynamical systems
to general dynamical systems.

1. Introduction and preliminaries

In [3], the dynamical properties is extended to general dynamical systems
and differential inclusions. One of the major topics of dynamical properties is
a generic property (A generic property is one that is true for a Baire set in the
space of dynamical systems), which relates to the continuity of the set-valued
map. In this paper, we use the terminology “motion” which was introduced in
[3]. However this concept has never been used in [6].

The main purpose of this paper is to extend the following Theorem A and
Theorem B for dynamical systems to general dynamical systems.

Theorem A ([6]). If K+(x) is compact for some x ∈ X, the following are
equivalent in dynamical system.

(1) x ∈ X is of charactorstic O+.
(2) K+ is continuous on X.
(3) K+(x) is stable for each x ∈ X.

Theorem B ([6]). In dynamical system, a necessary and sufficient condition
that the map L+ be continuous on X is that L+(x) is eventually stable for each
x ∈ X.

We prove here:
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Theorem 2.12. In general dynamical system, if K+(x) is compact for some
x ∈ X, the following are equivalent.

(1) For each point x ∈ X, x is of charactorstic O+.
(2) K+ is continuous on X.
(3) K+(x) is plsitively stable on each point x ∈ X.
(4) L+(x) is positively stable on each point x ∈ X.

Theorem 3.12. In general dynamical system, a necessary and sufficient condi-
tion that the map L+ be continuous on X is that L+(x) is positively eventually
stable for each x ∈ X.

Continuity and stability are key notions in the stucy of the qualitive theory
of dynamical systems. These widely studied by many researchers in differnt
contexts. We are extended here wildy their properties on general dynamical
systems to the well known result due to S. M. Saperstone and M. Nishihama
[6].

Generalized theory of dynamical systems [i.e., Φ : X × R → X continuous,
Φ(x, 0) = x and Φ(x, t + s) = Φ(Φ(x, t), s)] was introduced by Sibirsky (see
chapter VI [7]).

We are many similarities when we study ordinary dynamical systems and
general dynamical systems. But, there are sharp difference also while we study
these properties, for instance, invariance, minimality so on. To clarify this fact
it suffices to note that q ∈ Φ(p,R) does not imply the inclusion Φ(q,R) ⊂
Φ(p,R) [7].

General dynamical systems, which are sometimes referred to as general con-
trol systems or set-valued dynamical systems, are used to describe multi-valued
differential equations (including differential inclusions) and control systems as
well as economic flows. They have been widely studied in the literature [2, 3,
4].

We now introduced notions and definitions necessary for our works.
For a topological space X, F (X) will be used to denote the set of all

nonempty compact subsets of X.
Let (X, d) be a metric space. For A ⊂ X and ϵ > 0 we define

Bd(A, ϵ) = {x ∈ X | d(x, A) < ϵ},

where d(x, A) = inf{d(x, a) | a ∈ A}.

Definition 1.1. Let (X, d), (Y, ρ) be metric spaces. A set-valued map
f : X → F (Y ) is said to be

(1) upper semicontinuous at x ∈ X if for any ϵ > 0 there exists δ > 0 such
that d(x, y) < δ implies f(y) ⊂ Bρ(f(x), ϵ)

(2) lower semicontinuous at x if for any ϵ > 0 there exists δ > 0 such that
d(x, y) < δ implies f(x) ⊂ Bρ(f(y), ϵ)

(3) continuous at x if f is upper semicontinuous and lower semicontinuous
at x.
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Definition 1.2. Let (X, d), (Y, ρ) be metric spaces. Let f : X → F (Y ) be
a set-valued map. Then f is called

(1) upper semicontinuous if f is upper semicontinuous at every point of X
(2) lower semicontinuous if f is lower semicontinuous at every point of X
(3) continuous if f is upper semicontinuous and lower semicontinuous.

Definition 1.3. Let (X, d) be a metric space. A set-valued map f : X×R →
F (X) is said to be a general dynamical system if the following axioms hold:

(1) f(x, 0) = {x} for all x ∈ X
(2) if st > 0, then f(f(x, s), t) = f(x, s+ t) for all x ∈ X and s, t ∈ R
(3) f is continuous.

2. Continuity of the set-valued map K+, and its positive stability

In Sections 2 and 3, we research both continuity and stability of the set-
valued maps x ∈ X → K+(x) ∈ F (X) and x ∈ X → L+(x) ∈ F (X), where the
K+(x) is the positive orbit closure through x and L+(x) is the positive limit
set of x in general dynamical system f defined on a locally compact metric
space (X, d).

Theorem 2.1. f is upper semicontinuous at x ∈ X if and only if for any
neighborhood U of f(x), there exists a neighborhood V of x such that y ∈ V
implies f(y) ⊂ U .

Proof. Necessity: Since f(x) is compact, there exists ϵ > 0 such that B(f(x), ϵ)
⊂ U for any neighborhood U of f(x). By upper semicontinuous of f at x, there
is δ > 0 such that d(x, y) < δ implys f(y) ⊂ B(f(x), ϵ) ⊂ U . Set V = B(x, δ).
Then V is a neighborhood of x, and f(y) ⊂ U for all y ∈ V .

Sufficiency: Let x ∈ X and ϵ > 0. For a neighborhood B(f(x), ϵ) of f(x),
by assumption, there exists a neighborhood V of x such that y ∈ V implies
f(y) ⊂ B(f(x), ϵ). Thus f is upper semicontinuous at x ∈ X. □
Theorem 2.2. f is lower semicontinuous at x ∈ X if and only if for any open
set U with U ∩ f(x) ̸= ∅, there exists a neighborhood V of x such that y ∈ V
implies U ∩ f(y) ̸= ∅.

Proof. Necessity: Assume that z ∈ U ∩ f(x) for open set U of X. B(z, ϵ) ⊂ U
for some ϵ > 0. By the lower semicontinuity of f at x, there is δ > 0 such that
d(x, y) < δ implys f(x) ⊂ B(f(y), ϵ). Set B(x, δ) ≡ V . Let y ∈ V . Since
z ∈ f(x) ⊂ B(f(y), ϵ), d(z, w) < ϵ for some w ∈ f(y). By w ∈ B(z, ϵ) ⊂ U ,
U ∩ f(y) ̸= ∅.

Sufficiency: Let ϵ > 0. {B
(
z, ϵ

2

)
| z ∈ f(x)} is an open cover of f(x). By

the compactness of f(x), f(x) ⊂
∪k

i=1 B
(
zi,

ϵ
2

)
for finitely many z1, z2, . . . ,

zk ∈ f(x). For i = 1, 2, . . . , k, B
(
zi,

ϵ
2

)
satisfying B

(
zi,

ϵ
2

)
∩f(x) ̸= ∅

is an open set in X. Thus, yi ∈ V for some a neighborhood Vi of x implies

B
(
zi,

ϵ
2

)
∩ f(y) ̸= ∅. Since

∩k
i=1 Vi is a neighborhood of x, B(x, δ) ⊂

∩k
i=1 Vi

for some δ > 0.
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Let d(x, y) < δ and w ∈ f(x). Then w ∈ B
(
zj ,

ϵ
2

)
for some 1 ≤ j ≤ k. By

y ∈ B(x, δ) ⊂
∩k

i=1 Vi ⊂ Vj , we have B
(
zj ,

ϵ
2

)
∩ f(y) ̸= ∅. Let u ∈ B

(
zj ,

ϵ
2

)
∩f(y). Then d(w, u) ≤ d(w, z) + d(zj , u) < ϵ. Therefore, w ∈ B(f(y), ϵ)
using d(w, f(y)) ≤ d(w, u) < ϵ. Hence, f(x) ⊂ B(f(y), ϵ). Consequently, f
is lower semicontinuous at x. □

For x ∈ X, the positive orbit clousre through x is the set

K+(x) = f(x, R+),

and the positive limit set of x is the set

L+(x) = ∩t≥0f(x, [t, ∞)).

In this section, we assume that K+(x) is compact for all x ∈ X.

Theorem 2.3. The map K+ : X → F (X) is lower semicontinuous.

Proof. Let x ∈ X and U be a open set in X with U ∩ K+(x) ̸= ∅. Then
U ∩ f(x, t) ̸= ∅ for some t ∈ R+. By the lower semicontinuity of f at (x, t),
y ∈ V for some a neighborhood V of x implies U ∩ f(y, t) ̸= ∅. Thus, U ∩
f(y, t) ⊂ U ∩K+(y) for y ∈ V . Therefore, U ∩K+(y) ̸= ∅. Hence K+ must
be lower semicontinuous at x. □
Corollary 2.4. The followings are equivalent.

(1) K+ is upper semicontinuous at x ∈ X.
(2) K+ is continuous at x.

For x ∈ X, the positive prolongational set of x is the set

D+(x) =
∩

U∈Nx

f(U, R+),

where Nx is the set of all neighborhoods of x. x ∈ X is said to be characteristic
O+ if K+(x) = D+(x).

Theorem 2.5. If K+ is upper semicontinuous at x ∈ X, then x is of charac-
teristic O+.

Proof. Assume that x is not of characteristic O+. Let y ∈ D+(x) − K+(x).
Then y ̸∈ U for some neighborhood U of K+(x). By the upper semicontinuity
of K+ at x, there exists a neighborhood V of x such that z ∈ V implies
K+(z) ⊂ U . Hence y ∈ D+(x) ⊂ f(V × R+) ⊂ U . We have a contradiction to
the fact that y /∈ U . This proves that x is of characteristic O+. □
Theorem 2.6. K+ is continuous at x ∈ X if and only if x is of characteristic
O+.

Proof. Theorem 2.5 takes care of the “if” part. We now show that “only if”
part.

Suppose x is of characteristic O+. For every neighborhood U ofK+(x), there
exists a neighborhood V of K+(x) such that V ⊂ U and V is compact. If W is
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a neighborhood of x with f(W × R+) ⊂ V , then f(y) ⊂ f(W × R+) ⊂ V ⊂ U
for all y ∈ W . Hence K+ is upper semicontinuous at x. Consequently, K+ is
continuous by Corollary 2.4. We next show the existence a neighborhood W of
x with f(W ×R+) ⊂ V . Assume that this is not true, i.e., f(W ×R+) ̸⊂ V for
every neighborhoodW of x. Since x ∈ K+(x) ⊂ V , B(x, ϵ) ⊂ V for some ϵ > 0.
Also, by f

(
B
(
x, ϵ

i

)
× R+

)
̸⊂ V for all i, f(xi, ti) ̸⊂ V for some xi ∈ B

(
x, ϵ

i

)
and ti ∈ R+. The connectivity of f(xi, [0, t]) shows f(xi, [0, ti]) ∩ ∂V ̸= ∅.
Assume that yi ∈ f(xi, [0, ti])∩∂V . Since ∂V is compact, we may assume that
yi → y ∈ ∂V . By xi → x and yi ∈ f(xi, [0, ti]) ⊂ f(xi, R+), y ∈ D+(x) =
K+(x) ⊂ V , which contradicts y /∈ V . Hence there exists a neighborhood W
of x with f(W × R+) ⊂ V . □
Definition 2.1. A subset M ⊂ X is positively stable if for every neighborhood
U of M , there exists a neighborhood V of M such that f(V × R+) ⊂ U .

Definition 2.2. A subset M ⊂ X is positively invariant if f(x, R+) ⊂ M for
all x ∈ M . M is positively minimal if M is closed and positively invariant, but
none of its nonempty proper subsets has these two properties.

Theorem 2.7. If K+ is upper semicontinuous on K+(x), then K+(x) is pos-
itively stable.

Proof. Let U be any neighborhood of K+(x). By the upper semicontinuity of
K+ on K+(x), for every point y ∈ K+(x), there exists a neighborhood Vy of y

such that z ∈ Vy implies K+(z) ⊂ U . Since f(z, R+) ⊂ f(z, R+) = K+(z) ⊂
U for every z ∈ Vy, we get f(Vy × R+) ⊂ U . Take V =

∪
y∈K+(x) Vy. Then

V is a neighborhood of K+(x), and f(V × R+) = f
(∪

y∈K+(x)(Vy × R+)
)

=
∪

y∈K+(x) f(Vy × R+) ⊂ U .

Hence, K+(x) is positively stable. □
Theorem 2.8. K+ is continuous if and only if K+(x) is positively stable for
all x ∈ X.

Proof. Theorem 2.7 takes of the “only if” part. We now show that “if” part.
Suppose K+(x) is positively stable at every x ∈ X. For any neighborhood

U of K+(x), there exists a neighborhood V of K+(x) such that V ⊂ U . By
the positive stability of K+(x), f(W × R+) ⊂ V for some neighborhood W of

K+(x). This W is a neighborhood of x. Hence, we get K+(y) ⊂ f(W × R+) ⊂
V ⊂ U for every y ∈ W . This shows that K+ is upper semicontinuous at x.
By Corollary 2.4, K+ is continuous at x. □
Theorem 2.9. If K+(x) is positively stable at every x ∈ X, then so is L+(x).

Proof. We will show that K+(y) = L+(x) for every y ∈ L+(x). Since L+(x)
is positively invariant and compact, L+(x) contains a minimal set M . To
prove that M = L+(x), assume that y ∈ L+(x) − M . Then y ∈ U for some
neighborhood U of M . Let z ∈ M . We have K+(z) = M ⊂ U . From
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the positive stability of K+(z), f(V × R+) ⊂ U for some neighborhood V of
K+(z). Thus f(x, t) ⊂ V for some t ∈ R+. As f(x, [t, ∞)) = f(f(x, t) ×
R+) ⊂ f(V × R+) ⊂ U , y ∈ L+(x) ⊂ f(x, [t, ∞)) ⊂ U . This is impossible.
Hence M = L+(x). Since L+(x) is a minimal set, K+(y) = L+(x) for every
y ∈ L+(x). By the minimality of L+(x), K+(y) = L+(x) for each y ∈ L+(x).
By the assumption, L+(x) is positively stable. □

Lemma 2.10. For any neighborhood U of L+(x), there exists t ∈ R+ such
that f(x, [t, ∞)) ⊂ U .

Proof. By the local compactness of X, there exists a neighborhood V of L+(x)
such that V ⊂ U and V is compact. We will show that f(x, [t, ∞)) ⊂ V
for some t ∈ R+. Assume that there exists s ∈ R+ such that s ≥ t and
f(x, s) ̸⊂ V for each t ∈ R+. Let y ∈ L+(x). By the definition of L+(x),
there is a sequence tn → +∞ with yn ∈ f(x, tn) and yn → y. Since V is a
neighborhood of y, we may assume without loss of generality that yn ∈ V for all
n. Hence f(x, sn) ̸⊂ V for some sn ≥ tn. By the connectivity of f(x, [tn, sn]),
we get f(x, [tn, sn]) ∩ ∂V ̸= ∅. Let zn ∈ f(xn, rn) ∩ ∂V for tn ≤ rn ≤ sn.
As ∂V is compact, (zn) has a convergent subsequence. Assume without loss
of generality that zn → z ∈ ∂V . As tn → ∞, y ∈ L+(x). This is impossible.
Consequently, f(x, [t, ∞)) ⊂ V ⊂ U for some t ∈ R+. □

We now give a converse of Theorem 2.7.

Theorem 2.11. If L+(x) is positively stable, then so is K+(x).

Proof. Assume K+(x) is not positively stable. There exists a neighborhood
U of K+(x) such that f(V × R+) ̸⊂ U for every neighborhood V of K+(x).
By the local compactness of X, there is a neighborhood W of K+(x) such
that W ⊂ U and W is compact. Then, B(K+(x), ϵ) ⊂ W for some ϵ > 0. As
f
(
B(K+(x), ϵ

n

)
̸⊂ W for all n, f(Bn, R+) ̸⊂ W for some xn ∈ B

(
K+(x), ϵ

n

)
.

Since xn ∈ B
(
K+(x), ϵ

n

)
⊂ W and f(xn, R+) is connected set, we have

f(x, R+) ∩ ∂W ̸= ∅.
We may assume yn ∈ f(xn, tn) ∩ ∂W for tn ∈ R+. Since ∂W is compact,
we may assume yn → y ∈ ∂W . Also since xn ∈ W and W is compact, we
may assume xn → z ∈ W . Clearly, z ∈ K+(x). If (tn) is bounded, we may
assume tn → t ∈ R+. Since (xn, tn) → (z, t), yn ∈ f(xn, tn) and the upper
semicontinuity of f at (z, t), d(yn, zn) → 0 for some zn ∈ f(z, t). As yn → y,

we get zn → y. Thus y ∈ f(z, t) = f(z, t) ⊂ K+(x) ⊂ W . This is impossible.
If (tn) is unbounded, we may assume tn → ∞. By the positive stabil-

ity of L+(x), f(V × R+) ⊂ W for some neighborhood V of L+(x). Also,
f(x, [t, ∞)) ⊂ V for some t ∈ R+. Let z ∈ f(x, R+)∪L+(x). If z ∈ f(x, R+),
then z ∈ f(x, s) for some s ∈ R+. Thus f(z, t) ⊂ f(f(x, s), t) = f(x, s+t) ⊂
f(x, [t, ∞)) ⊂ V . Since f is upper semicontinuous at (z, t), f(A, t) ⊂ V
for some neighborhood A of z. Choose n such that xn ∈ A and tn ≥ t.
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Then f(xn, tn) ⊂ f(xn, [t, ∞)) = f(f(xn, t) × R+) ⊂ f(f(A, t) × R+) ⊂
f(V × R+) ⊂ W . This is impossible. If z ∈ L+(x) ⊂ V , xn ∈ V for some
n. Thus, f(xn, R+) ⊂ f(V × R+) ⊂ W . Again this is impossible. Therefore
K+(x) is positive stable. □

Combining the above results, we have:

Theorem 2.12. The followings are equivalent.
(1) For each point x ∈ X, x is of characteristic O+.
(2) K+ is continuous.
(3) K+(x) is positively stable for each point x ∈ X.
(4) L+(x) is positively stable for each point x ∈ X.

3. Continuity of the positive limit set map L+, and its positive
eventual stability

Theorem 3.1. If the map K+ is upper semicontinuous at x, then so is the
map L+.

Proof. Choose x ∈ L+(x). For every neighborhood U of L+(x) = K+(x), there
exists a neighborhood V of x such that y ∈ V implies K+(y) ⊂ U . By L+(y) ⊂
K+(y), we get L+(y) ⊂ U . Hence L+ is upper semicontinuous at x. Assume
that L+ is not upper semicontinuous at x ̸∈ L+(x). For some neighborhood
U of L+(x), there exists y ∈ V such that L+(y) ̸⊂ U for every neighborhood
V of x. Since K+ is upper semicontinuous at x, L+(x) is positively stable
by Lemma 2.4, Theorem 2.8 and Theorem 2.9. Thus, there exists positively
invariant neighborhood W of L+(x) such that W ⊂ U and W is compact.
Also, f(x, [s, ∞)) ⊂ W for some s ∈ R+. By the upper semicontinuity of
f at (x, s), f(V, s) ⊂ W for some neighborhood V of x. For each n, there
exists xn ∈ B

(
x, 1

n

)
such that L+(xn) ̸⊂ U . Since xn → x, we may assume

that xn ∈ V for all n. We claim that f(xn, [s, ∞)) ̸⊂ W . Assume that

f(xn, [s, ∞)) ⊂ W . Then, L+(xn) ⊂ f(xn, [s, ∞)) ⊂ W ⊂ U . This is
impossible since f(xn, [s, ∞)) = f(f(xn, s) × R+) ⊂ f(f(V, s) × R+) ⊂
f(W ×R+) = W . Thus f(xn, [s, ∞)) ̸⊂ W .

On the other hand, by f(xn, s) ⊂ f(V, s) ⊂ W and the connectedness of
f(xn, [s, ∞)), we get f(xn, [s, ∞)) ∩ ∂W ̸= ∅. Setting yn ∈ f(xn, tn) ∩ ∂W
for tn ≥ s. By compactness of ∂W , we may assume that yn → y ∈ ∂W . If (tn)
is bounded, assume without loss of the generality that tn → t for t ≥ s. From
(xn, tn) → (x, t), yn ∈ f(xn, tn) and upper semicontinuity of f at (x, t),
we get d(yn, zn) → 0 for some zn ∈ f(x, t). Also, zn → y since yn → y.

Thus, y ∈ f(x, t) = f(x, t) ⊂ f(V × [s, ∞)) ⊂ W . This is impossible. If
(tn) is unbounded, we may assume without loss of the generality tn → ∞. By
Lemma 2.4, x is of characteristic O+. Thus, y ∈ J+(x) = L+(x) ⊂ W . This is
impossible.

Consequently, L+ is upper semicontinuous at x. □
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Definition 3.1. A set M ⊂ X is positively eventually stable if for every neigh-
borhood U of M , there exists a neighborhood V of M such that for every
x ∈ V , there exists t ∈ R+ such that f(x, [t, ∞)) ⊂ U .

An important concept in the theory of general dynamical systems is that of
a motion.

Definition 3.2. A continuous function Φ : R → X is called a motion of f if
Φ(t) ∈ f(Φ(s), t− s) for s < t.

Let Ψ be the set of all motions of f . For x ∈ X, let Ψ(x) = {Φ ∈
Ψ | Φ(0) = x}. Let Φ ∈ Ψ. The positivie limit set L+(Φ) of Φ is defined

as L+(Φ) =
∩

t>0 Φ([t, ∞)).

Lemma 3.2. Let Φ ∈ Ψ. Then x ∈ L+(Φ) if and only if there exists a sequence
(tn) in R with tn → +∞ and Φ(tn) → x.

Proof. The proof easily follows from the definition. □

Lemma 3.3. Let Φ ∈ Ψ. Then for all s ∈ R, L+(Φ) ⊂ L+(Φ(s)).

Proof. Let y ∈ L+(Φ). Then there exists a sequence (tn) in R with tn → +∞
and Φ(tn) → y. We may assume without loss of the generality tn > s for all
n. Since Φ(tn) ∈ f(Φ(s), tn − s) and tn − s → ∞, we get y ∈ L+(Φ(s)). This
proves the lemma. □

We assume that f has the following assumption.
If y ∈ f(x, s) and z ∈ f(x, t) for s < t, then there exists Φ ∈ Ψ(y) such

that Φ(t− s) = z.
Now, under the hypothesis, we will prove the following results in Section 3.

Lemma 3.4. For all y ∈ L+(x), y ∈ L+(Φ) for some Φ ∈ Ψ(x).

Proof. By the definition of L+(x), there exist sequences (tn) in R and (yn) in
f(x, tn) with tn → +∞, yn → y. We may assume that t1 < t2 < t3 < · · · .
Then, there are ϕ1 ∈ Ψ(x) and Φ ∈ Ψ(y1) such that ϕ1(t2−t1) = y2, Ψ(t2−t1) =
y2. We define a map Φ2 : R → X by

Φ2(t) =

{
ϕ1(t) if t ≤ t1,

Φ1(t− t1) if t ≥ t1.

Then, Φ2 is continuous and Φ2(t2) = y2. Let s < t. Consider the following
three cases;

Case 1. t1 < s
Φ2(t) = Φ1(t− t1) ∈ f(Φ1(s− t1), t− s) = f(Φ2, t− s).
Case 2. s ≤ t1 < t
Φ2(t) = Ψ(t − t1) ∈ f(Ψ(0), t − t1) = f(y1, t − t1) = f(Φ1(t1), t − t1) ⊂

f(f(Φ1(s), t1 − s), t− t1) = f(Φ1(s), t− s) = f(Φ2(s), t− s).
Case 3. t ≤ t1
Φ2(t) = Φ1(t) ∈ f(Φ1(s), t− s) = f(Φ2(s), t− s).
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Thus, we obtain Φ2 ∈ Ψ(x), Φ2 = Φ1 on (−∞, t1]. Proceeding in this
fashion, we obtain Φn ∈ Ψ(x) with the property that Φn(tn) = yn and Φn =
Φn−1 on (−∞, tn−1].

We define a function Φ : R → X by Φ(t) = Φn(t) for some n with tn > t.
Then since Φ = Φn on (−∞, tn], it follows that Φ ∈ Ψ(x) and Φ(tn) = yn for
all n.

Consequently y ∈ L+(Φ). The lemma is proved. □

Theorem 3.5. Given x ∈ X, L+ is upper semicontinuous on L+(x) if and
only if L+(x) is positively minimal and positively eventually stable.

Proof. Suppose L+ is upper semicontinuous. Let y ∈ L+(x). We shall show
L+(x) ⊂ L+(y). Assume z ∈ L+(x) − L+(y). Then z /∈ U for some neigh-
borhood U of L+(y). As upper semicontinuity of L+ at y, there exists a
neighborhood V of y such that p ∈ V implies L+(p) ⊂ U . Also, there exist
sequences sn → ∞, tn → ∞, yn ∈ f(x, sn), zn ∈ f(x, tn) such that yn → y,
zn → z. We may assume without loss of the generality s1 < t1 < s2 <
t2 < · · · < sn < tn < · · · . By similar method of proof of Lemma 3.4, there
exists Φ ∈ Ψ(x) such that Φ(sn) = yn, Φ(yn) = zn. Thus, we get y, z ∈ L+(Φ)
for some Φ ∈ Ψ(x). As y ∈ L+(Φ), it follows that Φ(t) ∈ V for some t ∈ R+.
Thus, z ∈ L+(Φ) ⊂ L+(Φ(t)) ⊂ U . This is absurd as z ̸∈ U . So L+(x) is posi-
tively minimal. We now prove that L+(x) is positively eventually stable. Let
U be a neighborhood of L+(x). By upper semicontinuity of L+ at y ∈ L+(x),
there exists neighborhood Vy of y such that z ∈ Vy implies L+(z) ⊂ U . Setting
V =

∪
y∈L+(x) Vy. Then V is a neighborhood of L+(x). Also, for all z ∈ V ,

there exists y ∈ L+(x) such that z ∈ Vy. Thus, since L+(z) ⊂ U , by Lemma
2.10, there exists t ∈ R+ such that f(z, [t, ∞)) ⊂ U . This shows L+(x) is
positively eventually stable.

Conversely let L+(x) be positively minimal and positively eventually stable.
Let y ∈ L+(x) and let U be a neighborhood of L+(y). By positive minimality of
L+(x), L+(x) = L+(y). There exists a neighborhood V of L+(x) such that V ⊂
U . Since L+(x) is positively eventually stable, there exists a neighborhoodW of
L+(x) such that for every z ∈ W , there exists t ∈ R+ such that f(z, [t, ∞)) ⊂
U . Thus, L+(z) ⊂ f(z, [t, ∞)) ⊂ V ⊂ U . Hence L+ is upper semicontinuous
on L+(x). □

Definition 3.3. With a given M ⊂ X,

A(M) = {x ∈ X | L+(x) ̸= ∅ and L+(x) ⊂ M}.

This set called the region of attraction of the set M .

Lemma 3.6. The map L+ is upper semicontinuous on L+(x) if and only if
L+ is upper semicontinuous on A(L+(x)).

Proof. As L+(x) ⊂ A(L+(x)), we only need prove that L+ is upper semi-
continuous on A(L+(x)), if L+ is upper semicontinuous on L+(x). So let
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y ∈ A(L+(x)) and let U be a neighborhood of L+(y). There exists a neigh-
borhood V of L+(y) such that V ⊂ U . As L+(x) is positively minimal,
L+(x) = L+(y) by Theorem 3.5. As L+(x) positively eventually stable, there
exists a neighborhood W of L+(y) such that for each z ∈ W , there exists
t ∈ R+ such that f(z, [t, ∞)) ⊂ V . Also, f(y, [s, ∞)) ⊂ W for some
s ∈ R+. Since f is upper semicontinuous at (y, s), there exists a neigh-
borhood A of y such that f(A, s) ⊂ W . So, for every p ∈ W , there ex-
ists t ∈ R+ such that f(f(p, s), [t, ∞)) = f(p, [s + t, ∞)) ⊂ V . Thus,

L+(p) ⊂ f(p, [s+ t, ∞)) ⊂ V ⊂ U . Hence L+ is upper semicontinuous on
A(L+(x)). □

Lemma 3.7. If L+(y) is positively eventually stalbe for each y ∈ L+(x), then
L+(x) is positively minimal.

Proof. Suppose L+(x) is not positively minimal. Then there exists a minimal
set M in L+(x). Let y ∈ L+(x) − M . There exists a neighborhood U of
M such that x ̸∈ U . Let z ∈ M . By assumption, L+(x) = M is positively
eventually stable. Therefore, there exists a neighborhood V of M such that
for every p ∈ V , there exists t ∈ R+ such that f(p, [t, ∞)) ⊂ U . There
exists Φ ∈ Ψ(x) such that y, z ∈ L+(Φ). Since V is a neighborhood of z,
Φ(s) ∈ V for some s ∈ R+. So that f(Φ(s), [t, ∞)) ⊂ U for some t ∈ R+.

Hence y ∈ L+(Φ) ⊂ L+(Φ(s)) ⊂ f(Φ(s), [t, ∞)) ⊂ U . This is impossible since
y ̸∈ U . Thus L+(x) must be positively minimal. □

Combining Theorem 3.5, Lemma 3.6 and Lemma 3.7 we have:

Theorem 3.8. The map L+ is upper semicontinuous on X if and only if L+(x)
is positively eventually stable for each x ∈ X.

Proof. Since L+(x) is positively eventually stable for each x ∈ X, by Lemma
3.7, L+(x) is positively minimal. Also by Theorem 3.5, L+ is upper semicon-
tinuous. According to Lemma 3.6, L+ is upper semicontinuous on A(L+(x)).
Since x ∈ A(L+(x)), L+ is upper semicontinuous for each x ∈ X.

Conversely, the proof is immediate by Theorem 3.5. □

We now introduce the concept of positively eventually weakly stable which
shows the connection between the continuity of L+ and positively eventually
weak stability of L+(x) for each x ∈ X.

Definition 3.4. A set M ⊂ X is positively eventually weakly stable if for
every neighborhood U of M , there exists a neighborhood V of M such that
U ∩ f(x, [t, ∞)) ̸= ∅ for each x ∈ V , t ∈ R+.

Lemma 3.9. Let L+(y) be positively minimal for each y ∈ L+(x). Then the
map L+ is lower semicontinuous on L+(x) if and only if L+(y) is positively
eventually weakly stable for every y ∈ L+(x).
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Proof. Let y ∈ L+(x) for each x ∈ X and let U be a neighborhood of L+(y).
For all z ∈ L+(y), we obtain L+(z)∩U ̸= ∅. By lower semicontinuity of L+ at
z, there exists neighborhood Vz of z such that w ∈ Vz implies L+(w) ∩ U ̸= ∅.

Setting V ≡
∪

z∈L+(y) Vz. Then, Vz is a neighborhood of L+(y). For each

w ∈ V , w ∈ Vz for some z ∈ L+(y). Since L+(w) ∩ U ̸= ∅, we obtain
U ∩ f(w, [t, ∞)) ̸= ∅ for all t ∈ R+. Hence L+(y) is positively eventually
weakly stable for every y ∈ L+(x).

Conversely, let y ∈ L+(x) and U be open set in X with L+(y) ∩ U ̸= ∅.
Positive minimality of L+(y) ensures that K+(z) ∩ U ̸= ∅ for all z ∈ L+(y).
By lower semicontinuity of K+ at z, there exists a neighborhood Vz of z such
that w ∈ Vz implies K+(w)∩U ̸= ∅. Also there exists a neighborhood Wz such
that Wz ⊂ Vz and Wz is compact. Consider an open cover {Wz | z ∈ L+(y)}
of L+(y). By compactness of L+(y), there are finite points z1, z2, . . . , zm in
L+(y) such that L+(y) ⊂

∪m
i=1 Wzi .

Setting W =
∪m

i=1 Wzi . Then W is a neighborhood of L+(y). As L+(y) is
positively eventually weakly stable, there exists a neighborhood A of L+(y)
such that W ∩ f(w, [t, ∞)) ̸= ∅ for every w ∈ A, t ∈ R+. Also, there exists a
s ∈ R+ such that f(y, s) ⊂ A. By the upper semicontinuity of f at (y, s) there
exists a neighborhood B of y such that f(B, s) ⊂ A. Let p ∈ f(b, s) for all
b ∈ B. Since p ∈ f(b, s) ⊂ f(B, s) ⊂ A, we get W ∩f(p, [n, ∞)) ̸= ∅ for n. As
f(p, [n, ∞)) ⊂ f(f(b, s), [n, ∞)) = f(b, [n+s, ∞)), we obtain W ∩f(b, [n+
s, ∞)) ̸= ∅. Let xn ∈ W ∩ f(b, tn) for tn ≥ n+ s. By compactness of W and
xn ∈ W ⊂ W , we may assume xn → w ∈ W . Since xn ∈ f(b, tn), tn → ∞,

we have w ∈ L+(b). According to W =
∪n

i=1 Wzi =
∪n

i=1 Wzi ⊂
∪n

i=1 Vzi , we
obtain w ∈ Vzi for some i. Hence K+(w) ∩ U ̸= ∅. By w ∈ L+(b), we get
K+(w) ⊂ L+(b). Therefore L+(b) ∩ U ̸= ∅. Thus L+ is lower semicontinuous
on L+(x). □

Corollary 3.10. If the map L+ is upper semicontinuous on L+(x), then L+

is lower semicontinuous on L+(x).

Proof. Since L+(y) ⊂ L+(x) for all y ∈ L+(x), L+ is upper semicontinuous on
L+(y). By Theorem 3.5, L+(y) is positively minimal and positively eventually
stable. Thus L+ is lower semicontinuous on L+(x) by Lemma 3.9. □

Theorem 3.11. A necessary and sufficient condition that the map L+ be con-
tinuous on L+(x) is that L+(x) is positively minimal and positively eventually
stable.

Proof. If L+ is continuous on L+(x), by Theorem 3.4, L+(x) is positively
minimal and positively eventually stable.

Conversely, the proof is immediate from Theorem 3.4 and Corollary 3.10. □

Theorem 3.12. A necessary and sufficient condition that the map L+ be con-
tinuous on X is that L+(x) is positively eventually stable for each x ∈ X.
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Proof. Suppose L+(x) is positively eventually stable for each x ∈ X. By The-
orem 3.8 and Corollary 3.10, L+ is lower semicontinuous on L+(x). If L+ is
lower semicontinuous on A(L+(x)), then L+ is lower semicontinuous on x ∈ X.
So we show the lower semicontinuity of L+ on A(L+(x)). Let y ∈ A(L+(x)).
Then L+(y) ⊂ L+(x). By Theorem 3.5 and Theorem 3.8, L+(x) is positively
minimal. So, L+(y) = L+(x). Let U be an open set in X with U ∩L+(y) ̸= ∅.
Then for all z ∈ L+(y), L+(z) ∩ U ̸= ∅. By the lower semicontinuity of L+ at
z, there exists a neighborhood Vz of z such that w ∈ Vz implies L+(w)∩U ̸= ∅.

Setting V =
∪

z∈L+(y) Vz. Then V is a neighborhood of L+(y). Hence

f(y, [t, ∞)) ⊂ V for some t ∈ R+. By the upper semicontinuity of f at
(y, t), there exists a neighborhood W of y such that f(W, t) ⊂ V . Choose a
point q in f(p, t) for all p ∈ W . Since q ∈ f(p, t) ⊂ f(W, z) ⊂ V , we obtain
q ∈ Vz for some z ∈ L+(y). As L+(q) ∩ U ̸= ∅ and L+(q) ⊂ L+(p), we get
L+(p)∩U ̸= ∅. Hence L+ is lower semicontinuous at y. Therefore, L+ is lower
semicontinuous on A(L+(x)). □
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