• Title/Summary/Keyword: morphological and molecular data

Search Result 219, Processing Time 0.022 seconds

Taxonomic Position and Affinities of Isopyrum mandshuricum within Korean Isopyroideae (Ranunculaceae) Based on Molecular Data

  • Lee, Nam-Sook;Yeau, Sung-Hee;Kim, Ji-Hyun;Kim, Min-Ju
    • Animal cells and systems
    • /
    • v.3 no.2
    • /
    • pp.133-141
    • /
    • 1999
  • To examine the taxonomic position and affinities of Isopyrum mandshuricum (Ranunculaceae) and related taxa, genetic analysis were carried out on the basis of isozyme patterns and ITS sequences. Molecular data, both isozyme patterns and ITS sequences suggest that I. mandshuricum is closely related to Enemion raddeanum than to Semiaquilegia adoxoides. The estimation of genetic identities by isozyme analysis reveals that I. manshuricum is genetically distant from E. raddeanum. The phylogenetic tree based on molecular data is rather congruent with the phenogram based on quantitative morphological characteristics, but not consistent with one based on qualitative morphological characteristics. Incongruencies between molecular and qualitative morphological data provide clues to re-evaluate several morphological features.

  • PDF

Morphological and molecular identification of Alaria paradisea (Phaeophyceae, Laminariales) from the Kurile Islands

  • Klimova, Anna V.;Klochkova, Nina G.;Klochkova, Tatyana A.;Kim, Gwang Hoon
    • ALGAE
    • /
    • v.33 no.1
    • /
    • pp.37-48
    • /
    • 2018
  • Alaria is the second largest genus of the Laminariales, which is distributed far into the northern Pacific and Atlantic oceans. Due to its high morphological plasticity, over 100 specific and sub-specific names have been used in Alaria, this has been tailored down to the present 17 species through morphological revision and molecular phylogenetic analysis. Endemic species of Alaria from Russian Far East have not been thoroughly revised since their original description, and few of them were confirmed using molecular data until recently. We carried out morphological and molecular studies on A. paradisea which is an endemic species distributed on the Kurile Islands, first described by Miyabe and Nagai in 1932 as Pleuropterum paradiseum. The range of morphological variability and its distribution was re-evaluated using the type specimen as well as other specimens. Analyses of partial mitochondrial cytochrome c oxidase subunit 1 and nuclear-encoded internal transcribed spacer sequences showed that A. paradisea nested within the genus Alaria, but differs morphologically from any other Alaria species in having additional sporophylls with a central midrib (${\beta}-sporophylls$). Our results showed that A. paradisea clearly belongs to the genus Alaria based on DNA data, although the key morphological character that was used to include this species to the genus Pleuropterum, ${\beta}-sporophylls$, is stable and distinguishes it from other Alaria species.

Based on morphology and molecular data, Palisada rigida comb. nov. and Laurencia decussata comb. et stat. nov. (Rhodophyta, Rhodomelaceae) are proposed

  • Metti, Yola
    • ALGAE
    • /
    • v.37 no.1
    • /
    • pp.15-32
    • /
    • 2022
  • Inspecting herbaria collections of Laurencia rigida highlighted frequent misidentifications between L. rigida and L. heteroclada f. decussata, two poorly studied taxa from Australia. Recent collections of DNA material, including from topotype material, allowed for re-examination of these two taxa using molecular techniques. Detailed morphological and molecular analyses based on two markers (rbcL and COI-5P) strongly supported these two taxa as being distinct from each other and requiring nomenclatural changes. Comprehensive morphological analyses highlighted features useful for accurate identifications. Interestingly, L. rigida was found to belong to the genus Palisada with evidence from both the morphology and molecular data. Therefore, this study proposed recognizing L. rigida as Palisada rigida comb. nov. Molecular data for L. heteroclada f. decussata on the other hand supported its separation from L. heteroclada, with too great a molecular distance to be considered a variety. Morphological characters that best separated P. rigida from L. decussata included seven characters; number of pericentral cells per vegetative axial segment, the presence of secondary pit connections, the presence of lenticular thickenings, tetrasporangia alignment, the presence of corps en cerise, holdfast morphology, and overall plant shape. Morphologically, L. heteroclada f. decussata was also separated from L. heteroclada, particularly by the following characteristics; ultimate branchlets morphologies, lower order branch lengths, primary axis and holdfast morphologies. Therefore, it was proposed that L. heteroclada f. decussata is recognized at a species level as L. decussata comb. et stat. nov.

Taxonomic study of three new Antarctic Asterochloris (Trebouxiophyceae) based on morphological and molecular data

  • Kim, Jong Im;Kim, Yong Jun;Nam, Seung Won;So, Jae Eun;Hong, Soon Gyu;Choi, Han-Gu;Shin, Woongghi
    • ALGAE
    • /
    • v.35 no.1
    • /
    • pp.17-32
    • /
    • 2020
  • Asterochloris is one of the most common genera of lichen phycobionts in Trebouxiophyceae. Asterochloris phycobionts associated with the lichenized fungi Cladonia and Stereocaulon in King George Island (Antarctica) and Morro Chico (Chile), were isolated and then used to establish clonal cultures. To understand the phylogenetic relationships and species diversity of Antarctic Asterochloris species, molecular and morphological data were analyzed by using three microscopy techniques (light, confocal laser and transmission electron) and a multi-locus phylogeny with data from the nuclear-encoded internal transcribed spacer (ITS) rDNA and the actin and plastid-encoded ribulose bisphosphate carboxylase large chain (rbcL) coding genes. Morphological data of three Antarctic strains showed significant species-specific features in chloroplast while molecular data segregated the taxa into distinct three clades as well. Each species had unique molecular signatures that could be found in secondary structures of the ITS1 and ITS2. The species diversity of Antarctic Asterochloris was represented by six taxa, namely, A. glomerata, A. italiana, A. sejongensis, and three new species (A. antarctica, A. pseudoirregularis, A. stereocaulonicola).

Cyanobacterial Taxonomy: Current Problems and Prospects for the Integration of Traditional and Molecular Approaches

  • Komarek, Jiri
    • ALGAE
    • /
    • v.21 no.4
    • /
    • pp.349-375
    • /
    • 2006
  • The application of modern ecological, ultrastructural and molecular methods, aided by the cultivation of numerous cyanobacterial morphotypes, has substantially changed our knowledge of these organisms. It has led to major advances in cyanobacterial taxonomy and criteria for their phylogenetic classification. Molecular data provide basic criteria for cyanobacterial taxonomy; however, a correct phylogenetic system cannot be constructed without combining genetic data with knowledge from the previous 150 years research of cyanobacterial diversity. Thus, studies of morphological variation in nature, and modern morphological, ultrastructural, ecophysiological and biochemical characters need to be combined in a “polyphasic” approach. Taxonomic concepts for generic and infrageneric ranks are re-evaluated in light of combined phenotypic and molecular criteria. Despite their usefulness in experimental studies, the limitations of using strains from culture collections for systematic and nomenclatural purposes is highlighted. The need for a continual revision of strain identification and proper nomenclatural practice associated with either the bacteriological or botanical codes is emphasized. Recent advances in taxonomy are highlighted in the context of prospects for understanding cyanobacterial diversity from natural habitats, and the evolutionary and adaptational processes that cyanobacteria undergo.

Morphology and Molecular Data for Antarctic Cryophilic Microalga, Porosira pseudodenticulata (남극 호냉성 미세조 Porosira pseudodenticulata의 형태와 분자적 자료)

  • Jung, Woong-Sic;Joo, Hyoung-Min;Hong, Sung-Soo;Kang, Jae-Shin;Choi, Han-Gu;Kang, Sung-Ho
    • ALGAE
    • /
    • v.21 no.2
    • /
    • pp.169-174
    • /
    • 2006
  • We have cultured more than 100 Arctic and Antarctic cryophilic microalgal strains in KOPRI culture collections of polar microorganisms (KCCPM). Among them, we tried to identify an Antarctic strain, KOPRI AnM0008 by morphological and molecular analysis. Nuclear SSU rDNA and plastid rbcL sequences were used to identify the strain. It was identified as Porosira pseudodenticulata based on SSU sequence data showing 99% identity with GenBank X85398. This result was supported by morphological features like solitary labiate process, external foramina and internal cribra by optical and scanning electron microscope. Morphological identification and molecular analysis on polar cryophilic microalgae will be accomplished to construct the databases for KCCPM.

A new distribution record of Chrysosplenium grayanum Maxim. (Saxifragaceae) in Korea: Evidence from morphological and molecular data

  • Choi, Ji-Eun;In, Kyung-Ho;Kim, Bong Seok;Kim, Kyeonghee;Kim, Jin-Seok;Kim, Yong-In;Lee, Byoung Yoon;Lim, Chae Eun
    • Journal of Species Research
    • /
    • v.9 no.1
    • /
    • pp.46-55
    • /
    • 2020
  • Chrysosplenium grayanum Maxim. (Series Nepalensia), which had been known to be restricted to Japan, was newly discovered from Mt. Cheongtae in Yeonggwang-gun, Jeollanam-do, located in the southern part of the Korean Peninsula. Species identification was confirmed using morphological characteristics and DNA sequence data, while comparing with materials obtained from Japan and herbarium specimens. Chrysosplenium grayanum is clearly distinguished from the remaining taxa of the genus Chrysosplenium by having glabrous plant body, opposite leaves, cylindrical papillae with roundish head at the tip on the smooth seed surface, and four stamens. Molecular sequence data of the nuclear ribosomal ITS regions, chloroplast rbcL and matK genes strongly supported that this previously unknown Chrysosplenium species from Korea is C. grayanum. Taking the molecular and the morphological evidence into consideration, it is clear that newly discovered Chrysosplenium population in Korea is conspecific with the widely distributed C. grayanum in Japan. In this paper, we provide a description, illustration, and photo images of Chrysosplenium grayanum from Korea and also a key to the Chrysosplenium species in Korea.

Molecular Identification of Arbuscular Mycorrhizal Fungal Spores Collected in Korea

  • Lee, Jai-Koo;Park, Sang-Hyeon;Eom, Ahn-Heum
    • Mycobiology
    • /
    • v.34 no.1
    • /
    • pp.7-13
    • /
    • 2006
  • Arbuscular mycorrhizas (AM) have mutualistic symbiosis with plants and thus efforts have been placed on application of these symbiotic relationships to agricultural and environmental fields. In this study, AM fungi were collected from 25 sites growing with 16 host plant species in Korea and cultured with Sorghum bicolor in greenhouse condition. AM fungal spores were extracted and identified using both morphological and molecular methods. Using morphological characters, total 15 morpho-speices were identified. DNA was extracted from single spore of AM fungi and a partial region on 18S rDNA was amplified using nested PCR with AM fungal specific primers AML1/AML2. A total of 36 18S rDNA sequences were analyzed for phylogenetic analysis and 15 groups of AM fungi were identified using both morphological and molecular data of spores. Among the species, 4 species, Archaeospora leptoticha, Scutellospora castanea, S. cerradensis, S. weresubiae were described for the first time in Korea and two species in Glomus and a species in Gigaspora were not identified. Morphological and molecular identification of AM fungal spores in this study would help identify AM fungal community colonizing roots.

Molecular Characterization of Filenchus cylindricus (Thorne & Malek, 1968) Niblack & Bernard, 1985 (Tylenchida: Tylenchidae) from Korea, with Comments on Its Morphology

  • Mwamula, Abraham Okki;Kim, Yiseul;Kim, Yeong Ho;Lee, Ho-wook;Kim, Young Ho;Lee, Dong Woon
    • The Plant Pathology Journal
    • /
    • v.38 no.4
    • /
    • pp.323-333
    • /
    • 2022
  • Filenchus cylindricus (Thorne & Malek, 1968) Niblack & Bernard, 1985 was reported from the sandy rhizospheric soils of Poa pratensis and for the first time in Korea. Females and males are molecularly characterized and morphological and morphometric data supplied. Identification was made using an integrative approach considering morphological characteristics and inferences drawn from the analyses of the D2-D3 expansion segment of 28S rRNA and ITS1-5.8S-ITS2 of rRNA partial sequences. Females and males from Korea conform to the type descriptions and also to subsequent species descriptions from Iowa and Colorado USA, Sudan and Pakistan. Despite the close morphological and morphometric similarities with F. thornei (Andrássy, 1954) Andrássy, 1963, the two species can be adequately differentiated based on molecular data inference.

Revisiting Rhytisma lonicericola: Morphological Characterization and Molecular Phylogenetic Analysis

  • Jung, Bok-Nam;Park, Ji-Hyun;Shin, Hyeon-Dong
    • Mycobiology
    • /
    • v.50 no.2
    • /
    • pp.150-154
    • /
    • 2022
  • Rhytisma lonicericola was identified as a tar spot fungus on Lonicera sp. in 1902, and has since been recorded on several species of Lonicera in China, Japan, and Korea. Most of the previous records of R. lonicericola have been based on a list of disease occurrences in the absence of any formal morphological identification or molecular analyses. Using six newly obtained specimens collected in the past 2 years, we confirmed the tar spot fungus found on L. japonica in Korea as R. lonicericola based on morphological examinations and molecular phylogenetic analyses. This fungus was distinguished from R. xylostei, another tar spot fungus on Lonicera, by ascospore size and geographical distributions. We present detailed mycological information and, for the first time, DNA sequence data useful for the identification of R. lonicericola.