Browse > Article
http://dx.doi.org/10.4490/algae.2020.35.2.23

Taxonomic study of three new Antarctic Asterochloris (Trebouxiophyceae) based on morphological and molecular data  

Kim, Jong Im (Department of Biology, Chungnam National University)
Kim, Yong Jun (Department of Biology, Chungnam National University)
Nam, Seung Won (Nakdonggang National Institute of Biological Resources)
So, Jae Eun (Division of Polar Life Sciences, Korea Polar Research Institute)
Hong, Soon Gyu (Division of Polar Life Sciences, Korea Polar Research Institute)
Choi, Han-Gu (Division of Polar Life Sciences, Korea Polar Research Institute)
Shin, Woongghi (Department of Biology, Chungnam National University)
Publication Information
ALGAE / v.35, no.1, 2020 , pp. 17-32 More about this Journal
Abstract
Asterochloris is one of the most common genera of lichen phycobionts in Trebouxiophyceae. Asterochloris phycobionts associated with the lichenized fungi Cladonia and Stereocaulon in King George Island (Antarctica) and Morro Chico (Chile), were isolated and then used to establish clonal cultures. To understand the phylogenetic relationships and species diversity of Antarctic Asterochloris species, molecular and morphological data were analyzed by using three microscopy techniques (light, confocal laser and transmission electron) and a multi-locus phylogeny with data from the nuclear-encoded internal transcribed spacer (ITS) rDNA and the actin and plastid-encoded ribulose bisphosphate carboxylase large chain (rbcL) coding genes. Morphological data of three Antarctic strains showed significant species-specific features in chloroplast while molecular data segregated the taxa into distinct three clades as well. Each species had unique molecular signatures that could be found in secondary structures of the ITS1 and ITS2. The species diversity of Antarctic Asterochloris was represented by six taxa, namely, A. glomerata, A. italiana, A. sejongensis, and three new species (A. antarctica, A. pseudoirregularis, A. stereocaulonicola).
Keywords
Antarctica; Asterochloris; lichen; photobiont; phylogeny; taxonomy; Trebouxiophyceae;
Citations & Related Records
Times Cited By KSCI : 2  (Citation Analysis)
연도 인용수 순위
1 Friedl, T. 1995. Inferring taxonomic positions and testing genus level assignments in coccoid green lichen algae: a phylogenetic analysis of 18S ribosomal RNA sequences from Dictyochloropsis reticulata and from members of the genus Myrmecia (Chlorophyta, Trebouxiophyceae cl. nov.). J. Phycol. 31:632-639.   DOI
2 Friedl, T. & Budel, B. 2008. Photobionts. In Nash, T. H. (Ed.) Lichen Biology. 2nd ed. Cambridge University Press, Cambridge, pp. 9-26.
3 Friedl, T. & Rokitta, C. 1997. Species relationships in the lichen alga Trebouxia (Chlorophyta, Trebouxiophyceae): molecular phylogenetic analyses of nuclear encoded large subunit rRNA gene sequences. Symbiosis 23:125-148.
4 Friedl, T. & Zeltner, C. T. 1994. Assessing the relationships of some coccoid green lichen algae and the Microthamniales (Chlorophyta) with 18S ribosomal RNA gene sequence comparisons. J. Phycol. 30:500-506.   DOI
5 Garrido-Benavent, I. & Perez-Ortega, S. 2017. Past, present, and future research in bipolar lichen-forming fungi and their photobionts. Am. J. Bot. 104:1660-1674.   DOI
6 Garrido-Benavent, I., Perez-Ortega, S. & de los Rios, A. 2017. From Alaska to Antarctica: Species boundaries and genetic diversity of Prasiola (Trebouxiophyceae), a foliose chlorophyte associated with the bipolar lichen forming fungus Mastodia tessellata. Mol. Phylogenet. Evol. 107:117-131.   DOI
7 Ma, S., Han, B., Huss, V. A. R., Hu, X., Sun, X. & Zhang, J. 2015. Chlorella thermophila (Trebouxiophyceae, Chlorophyta), a novel thermo-tolerant Chlorella species isolated from an occupied rooftop incubator. Hydrobiologia 760:81-89.   DOI
8 Mai, J. C. & Coleman, A. W. 1997. The internal transcribed spacer 2 exhibits a common secondary structure in green algae and flowering plants. J. Mol. Evol. 44:258-271.   DOI
9 Moya, P., Skaloud, P., Chiva, S., Garcia-Breijo, F. J., Reig-Arminana, J., Vancurova, L. & Barreno, E. 2015. Molecular phylogeny and ultrastructure of the lichen microalga Asterochloris mediterranea sp. nov. from Mediterranean and Canary Islands ecosystems. Int. J. Syst. Evol. Microbiol. 65:1838-1854.   DOI
10 Muggia, L., Leavitt, S. & Barreno, E. 2018. The hidden diversity of lichenized Trebouxiophyceae (Chlorophyta). Phycologia 57:503-524.   DOI
11 Nageli, C. 1849. Gattungen einzelliger Algen, physiologisch und systematisch bearbeitet. Neue Denkschriften der Allg. Schweizerischen Gesellschaft fur die Gesammten Naturwissenschaften 10:1-139.
12 Olech, M. 2004. Lichens of King George Island, Antarctica. The Institute of Botany of the Jagiellonian University, Krakow, 391 pp.
13 Orange, A., James, P. W. & White, F. J. 2001. Microchemical methods for identification of lichens. British Lichen Society, London, 101 pp.
14 Ovstedal, D. O. & Smith, R. I. L. 2001. Lichens of Antarctica and South Georgia: a guide to their identification and ecology. Cambridge University Press, Cambridge, 424 pp.
15 Kim, J. I., Nam, S. W., So, J. E., Hong, S. G., Choi, H. -G. & Shin, W. 2017. Asterochloris sejongensis sp. nov. (Trebouxiophyceae, Chlorophyta) from King George Island, Antarctica. Phytotaxa 295:60-70.   DOI
16 Perez-Ortega, S., Ortiz-Alvarez, R., Allan Green, T. G. & de Los Rios, A. 2012. Lichen myco- and photobiont diversity and their relationships at the edge of life (McMurdo Dry Valleys, Antarctica). FEMS Microbiol. Ecol. 82:429-448.   DOI
17 Gartner, G. 1985. Taxonomische problem bei den flechtenalgengattungen Trebouxia und Pseudotrebouxia (Chlorophyceae, Chlorellales). Phyton 25:101-111.
18 Honegger, R. 2012. The symbiotic phenotype of lichen-forming Ascomycetes and their endo- and epibionts. In Hock, B. (Ed.) The Mycota, Vol. 9. Springer, Berlin, pp. 287-339.
19 Jaag, O. 1929. Recherches experimentales sur les gonidies des lichens appurtenant aux genres Parmelia et Cladonia. Bull. Trav. Soc. bot. Geneve 21:1-119.
20 Jaklitsch, W. M., Baral, H. O., Lucking, R. & Lumbsch, H. T. 2016. Ascomycota. In Frey, W. (Ed.) Syllabus of Plant Families: Adolf Engler's Syllabus der Pflanzenfamilien. Borntraeger, Stuttgart, pp. 1-322.
21 Kirk, P. M., Cannon, P. F., Minter, D. W. & Stalpers, J. A. 2008. Ainsworth & Bisby's dictionary of the fungi. 10th ed. Cromwell Press, Trowbridge, 771 pp.
22 Kroken, S. & Taylor, J. W. 2000. Phylogenetic species, reproductive mode, and specificity of the green alga Trebouxia forming lichens with the fungal genus Letharia. Bryologist 103:645-660.   DOI
23 Laybourn-Parry, J. & Pearce, D. A. 2007. The biodiversity and ecology of Antarctic lakes: models for evolution. Phil. Trans. R. Soc. B 362:2273-2289.   DOI
24 Lucking, R., Hodkinson, B. P. & Leavitt, S. D. 2017. Corrections and amendments to the 2016 classification of lichenized fungi in the Ascomycota and Basidiomycota. Bryologist 120:58-69.   DOI
25 Reynolds, E. S. 1963. The use of lead citrate at high pH as an electron-opaque stain in electron microscopy. J. Cell Biol. 17:208-212.   DOI
26 Piercey-Normore, M. D. & DePriest, P. T. 2001. Algal switching among lichen symbioses. Am. J. Bot. 88:1490-1498.   DOI
27 Puymaly, A. de. 1924. Le Chlorococcum humicola (Naeg.) Rabenh. Rev. Algol. 2:107-114.
28 Raths, H. 1938. Experimentelle Untersuchungen mit Flechtengonidien der Familie der Caliciaceen. Ber. Schweiz. Bot. Ges. 48:329-416.
29 Richardson, D. H. S. & Smith, D. C. 1968. Lichen physiology. IX. Carbohydrate movement from the Trebouxia symbiont of Xanthoria aureola to the fungus. New Phytol. 67:61-68.   DOI
30 Richardson, D. H. S., Smith, D. C. & Lewis, D. H. 1967. Carbohydrate movement between the symbionts of lichens. Nature 214:879-882.   DOI
31 Romeike, J., Friedl, T., Helms, G. & Ott, S. 2002. Genetic diversity of algal and fungal partners in four species of Umbilicaria (lichenized ascomycetes) along a transect of the Antarctic Peninsula. Mol. Biol. Evol. 19:1209-1217.   DOI
32 Ronquist, F., Teslenko, M., van der Mark, P., Ayres, D. L., Darling, A., Hohna, S., Larget, B., Liu, L., Suchard, M. A. & Huelsenbeck, J. P. 2012. MrBayes 3.2: efficient Bayesian phylogenetic inference and model choice across a large model space. Syst. Biol. 61:539-542.   DOI
33 Smith, S. W., Overbeek, R., Woese, C. R., Gilbert, W. & Gillevet, P. M. 1994. The genetic data environment an expandable GUI for multiple sequence analysis. Comput. Appl. Biosci. 10:671-675.
34 Ruprecht, U., Brunauer, G. & Printzen, C. 2012. Genetic diversity of photobionts in Antarctic lecideoid lichens from an ecological view point. Lichenologist 44:661-678.   DOI
35 Schwendener, S. 1867. Uber die wahre Natur der Flechtengonidien. Verh. Schweiz. Naturforsch. Ges. 51:88-90.
36 Sherwood, A. R., Garbary, D. J. & Sheath, R. G. 2000. Assessing the phylogenetic position of the Prasiolales (Chlorophyta) using rbcL and 18S rRNA gene sequence data. Phycologia 39:139-146.   DOI
37 Skaloud, P. & Peksa, O. 2010. Evolutionary inferences based on ITS rDNA and actin sequences reveal extensive diversity of the common lichen alga Asterochloris (Trebouxiophyceae, Chlorophyta). Mol. Phylogenet. Evol. 54:36-46.   DOI
38 Skaloud, P., Steinova, J., Ridka, T., Vancurova, L. & Peksa, O. 2015. Assembling the challenging puzzle of algal biodiversity: species delimitation within the genus Asterochloris (Trebouxiophyceae, Chlorophyta). J. Phycol. 51:507-527.   DOI
39 Stamatakis, A. 2014. RAxML version 8: a tool for phylogenetic analysis and post-analysis of large phylogenies. Bioinformatics 30:1312-1313.   DOI
40 Thomas, D. L. & Montes, J. G. 1978. Spectrophotometrically assayed inhibitory effects of mercuric compounds on Anabaena flos-aquae and Anacystis nidulans (Cyanophyceae). J. Phycol. 14:494-499.   DOI
41 Treboux, O. 1912. Die freilebende Alge und die Gonidie Cystococcus humicola in bezug auf die Flechtensymbiose. Ber. Deutsc. Bot. Ges. 30:69-80.
42 Beck, A., Bechteler, J., Casanova-Katny, A. & Dzhilyanova, I. 2019. The pioneer lichen Placopsis in maritime Antarctica: genetic diversity of their mycobionts and green algal symbionts, and their correlation with deglaciation time. Symbiosis 79:1-24.   DOI
43 Tschermak-Woess, E. 1980. Asterochloris phycobiontica, gen. et spec., nov., der Phycobiont der Flechte Varicellaria carneonivea. Plant Syst. Evol. 135:279-294.   DOI
44 Tschermak-Woess, E. 1988. The algal partner. In Galun, M. (Ed.) CRC Handbook of Lichenology, Vol. 1. CRC Press, Boca Raton, FL, pp. 39-92.
45 Ahmadjian, V. 1960. Some new and interesting species of Trebouxia, a genus of lichenized algae. Am. J. Bot. 47:677-683.   DOI
46 Ahmadjian, V. 1967. A guide to the algae occurring as lichen symbionts: isolation, culture, cultural physiology, and identification. Phycologia 6:127-160.   DOI
47 Archibald, P. A. 1975. Trebouxia de Pulmaly (Chlorophyceae, Chlorococcales) and Pseudotrebouxia gen. nov. (Chlorophyceae, Chlorosarcinales). Phycologia 14:125-137.   DOI
48 Borchhardt, N., Schiefelbein, U., Abarca, N., Boy, J., Mikhailyuk, T., Sipman, H. J. M. & Karsten, U. 2017. Diversity of algae and lichens in biological soil crusts of Ardley and King George islands, Antarctica. Antarct. Sci. 29:229-237.   DOI
49 Chae, H., Lim, S., Kim, H. S., Choi, H. G. & Kim, J. H. 2019. Morphology and phylogenetic relationships of Micractinium (Chlorellaceae, Trebouxiophyceae) taxa, including three new species from Antarctica. Algae 34:267-275.   DOI
50 Chodat, R. 1913. Monographies d'Algues en Culture Pure. Materiaux Pour la Flore Cryptogamique Suisse, Vol. 4, Fasc. 2. K.J. Wyss, Berne, 266 pp.
51 Coleman, A. W. 2000. The significance of a coincidence between evolutionary landmarks found in mating affinity and a DNA sequence. Protist 151:1-9.   DOI
52 Elbert, W., Weber, B., Burrows, S., Steinkamp, J., Budel, B., Andreae, M. O. & Poschl, U. 2012. Contribution of cryptogamic covers to the global cycles of carbon and nitrogen. Nat. Geosci. 5:459-462.   DOI
53 Coleman, A. W. 2003. ITS2 is a double-edged tool for eukaryote evolutionary comparisons. Trends Genet. 19:370-375.   DOI
54 Convey, P., Stevens, M. I., Hodgson, D. A., Smellie, J. L., Hillenbrand, C. -D., Barnes, D. K. A., Clarke, A., Pugh, P. J. A., Linse, K. & Cary, S. C. 2009. Exploring biological constraints on the glacial history of Antarctica. Quat. Sci. Rev. 28:3035-3048.   DOI
55 Culberson, C. F. 1972. Improved conditions and new data for the identification of lichen products by a standardized thin-layer chromatographic method. J. Chromatogr. 72:113-125.   DOI
56 Engelen, A., Convey, P., Popa, O. & Ott, S. 2016. Lichen photobiont diversity and selectivity at the southern limit of the maritime Antarctic region (Coal Nunatak, Alexander Island). Polar Biol. 39:2403-2410.   DOI
57 Fernandez-Mendoza, F., Domaschke, S., Garcia, M. A., Jordan, P., Martin, M. P. & Printzen, C. 2011. Population structure of mycobionts and photobionts of the widespread lichen Cetraria aculeata. Mol. Ecol. 20:1208-1232.   DOI
58 Fisher, K. A. & Lang, N. J. 1971. Ultrastructure of the pyrenoid of Trebouxia in Ramalina menziesii Tuck. J. Phycol. 7:25-37.   DOI
59 Friedl, T. 1989. Comparative ultrastructure of pyrenoids in Trebouxia (Microthamniales, Chlorophyta). Plant Syst. Evol. 164:145-159.   DOI
60 Vancurova, L., Peksa, O., Nemcova, Y. & Skaloud, P. 2015. Vulcanochloris (Trebouxiales, Trebouxiophyceae), a new genus of lichen photobiont from La Palma, Canary Islands, Spain. Phytotaxa 219:118-132.   DOI
61 Walter, A. E., Turner, D. H., Kim, J., Lyttle, M. H., Muller, P., Mathews, D. H. & Zuker, M. 1994. Coaxial stacking of helixes enhances binding of oligoribonucleotides and improves predictions of RNA folding. Proc. Natl. Acad. Sci. U. S. A. 91:9218-9222.   DOI
62 Waren, H. 1920. Reinkulturen von Flechtengonidien. Ofvers. Finska Vet.-Soc. Forh. 61A:1-79.
63 White, T. J., Bruns, T., Lee, S. & Taylor, J. 1990. Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics. In Innis, M. A., Gelfand, D. H., Sninsky, J. J. & White, T. J. (Eds.) PCR Protocols: A Guide to Methods and Applications. Academic Press, San Diego, California, pp. 315-322.
64 Zuker, M. 2003. Mfold web server for nucleic acid folding and hybridization prediction. Nucleic Acids Res. 31:3406-3415.   DOI