• Title/Summary/Keyword: monthly flow forecast

Search Result 10, Processing Time 0.027 seconds

Assessing the Benefits of Incorporating Rainfall Forecasts into Monthly Flow Forecast System of Tampa Bay Water, Florida (하천 유량 예측 시스템 개선을 위한 강우 예측 자료의 적용성 평가: 플로리다 템파 지역 사례를 중심으로)

  • Hwang, Sye-Woon;Martinez, Chris;Asefa, Tirusew
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.54 no.4
    • /
    • pp.127-135
    • /
    • 2012
  • This paper introduced the flow forecast modeling system that a water management agency in west central Florida, Tampa Bay Water has been operated to forecast monthly rainfall and streamflow in the Tampa Bay region, Florida. We evaluated current 1-year monthly rainfall forecasts and flow forecasts and actual observations to investigate the benefits of incorporating rainfall forecasts into monthly flow forecast. Results for rainfall forecasts showed that the observed annual cycle of monthly rainfall was accurately reproduced by the $50^{th}$ percentile of forecasts. While observed monthly rainfall was within the $25^{th}$ and $75^{th}$ percentile of forecasts for most months, several outliers were found during the dry months especially in the dry year of 2007. The flow forecast results for the three streamflow stations (HRD, MB, and BS) indicated that while the 90 % confidence interval mostly covers the observed monthly streamflow, the $50^{th}$ percentile forecast generally overestimated observed streamflow. Especially for HRD station, observed streamflow was reproduced within $5^{th}$ and $25^{th}$ percentile of forecasts while monthly rainfall observations closely followed the $50^{th}$ percentile of rainfall forecasts. This was due to the historical variability at the station was significantly high and it resulted in a wide range of forecasts. Additionally, it was found that the forecasts for each station tend to converge after several months as the influence of the initial condition diminished. The forecast period to converge to simulation bounds was estimated by comparing the forecast results for 2006 and 2007. We found that initial conditions have influence on forecasts during the first 4-6 months, indicating that FMS forecasts should be updated at least every 4-6 months. That is, knowledge of initial condition (i.e., monthly flow observation in the last-recent month) provided no foreknowledge of the flows after 4-6 months of simulation. Based on the experimental flow forecasts using the observed rainfall data, we found that the 90 % confidence interval band for flow predictions was significantly reduced for all stations. This result evidently shows that accurate short-term rainfall forecasts could reduce the range of streamflow forecasts and improve forecast skill compared to employing the stochastic rainfall forecasts. We expect that the framework employed in this study using available observations could be used to investigate the applicability of existing hydrological and water management modeling system for use of stateof-the-art climate forecasts.

Analysis and Forecast of Non-Stationary Monthly Steam Flow (비정상 월유량 시계열의 해석과 예측)

  • 이재형;선우중호
    • Water for future
    • /
    • v.11 no.2
    • /
    • pp.54-61
    • /
    • 1978
  • An attemption of synthesizing and forecasting of monthly river flow has been made by employing a linear stochastic difference equation model. As one of the linear stochestic difference equation model, an ARIMA Type is tested to find the suitability of the model to the monthly river flows. On the assumption of the stationary covariacne of differenced monthly river flows the model is identrfield and is evaluated so that the residuale have the minimum variance. Finally a test is performed to finld the residerals beings White noise. Monthly river flows at six stations in Han River Basin are applied for case studies. It was found that the difference operator is a good measure of forecasting the monthly river flow.

  • PDF

Stochastic Forecasting of Monthly River Flwos by Multiplicative ARIMA Model (Multiplicative ARIMA 모형에 의한 월유량의 추계학적 모의 예측)

  • 박무종;윤용남
    • Water for future
    • /
    • v.22 no.3
    • /
    • pp.331-339
    • /
    • 1989
  • The monthly flows with periodicity and trend were forecasted by multiplicative ARIMA model and then the applicability of the model was tested based on 23 years of the historical monthly flow data at Jindong river stage gauging station in the Nakdong River Basin. The parameter estimation was made with 21 years of data and the remaining two years of monthly data were used to compare the forecasted flows by ARIMA (2,0,0)$\times$$(0,1,1)_{12}$ with the observed. The results of forecast showed a good agreement with the observed, implying the applicability of multiplicative ARIMA model for forecasting monthly river flows at the Jindong site.

  • PDF

Construction of System for Water Quality Forecasting at Dalchun Using Neural Network Model (신경망 모형을 이용한 달천의 수질예측 시스템 구축)

  • Lee, Won-ho;Jun, Kye-won;Kim, Jin-geuk;Yeon, In-sung
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.21 no.3
    • /
    • pp.305-314
    • /
    • 2007
  • Forecasting of water quality variation is not an easy process due to the complicated nature of various water quality factors and their interrelationships. The objective of this study is to test the applicability of neural network models to the forecasting of the water quality at Dalchun station in Han River. Input data is consist of monthly data of concentration of DO, BOD, COD, SS and river flow. And this study selected optimal neural network model through changing the number of hidden layer based on input layer(n) from n to 6n. After neural network theory is applied, the models go through training, calibration and verification. The result shows that the proposed model forecast water quality of high efficiency and developed web-based water quality forecasting system after extend model

CASH FLOW FORECASTING IN CONSTRUCTION PROJECT (건설공사에서의 현금흐름 예측)

  • Park Hyung-Keun
    • Proceedings of the Korean Institute Of Construction Engineering and Management
    • /
    • autumn
    • /
    • pp.35-41
    • /
    • 2002
  • This research introduces the development of a project-level cash flow forecasting model in construction stage based on the planned earned value and the cost from a general contractors view on a jobsite. Most previous models have been developed to assist contractors in their pre-tendering or planning stage cash flow forecasts. The critical key to cash flow forecasting at the project level is how to build a cash-out model. The basic concept is to use moving weights of cost categories in a budget over project duration. The cost categories are classified to compile resources with almost the same time lags that are based on contracting payment conditions and credit times given by suppliers or venders. For cash-in, net planned monthly-earned values are simply transferred to the cash-in forecast, to be applied there with billing time and retention money. Validation of the model involves applying data from on-going 4 projects in progress for 12 months. Based on the results of the comparative analyses through the simulation of the proposed model and the existing models, the proposed model is more accurate, flexible and simpler than traditional models to the employee of construction jobsite who is not oriented financial knowledge.

  • PDF

Development and evaluation of ANFIS-based conditional dam inflow prediction method using flow regime (ANFIS 기반의 유황별 조건부 댐 유입량 예측기법 개발 및 평가)

  • Moon, Geon-Ho;Kim, Seon-Ho;Bae, Deg-Hyo
    • Journal of Korea Water Resources Association
    • /
    • v.51 no.7
    • /
    • pp.607-616
    • /
    • 2018
  • Flow regime-based ANFIS Dam Inflow Prediction (FADIP) model is developed and compared with ANFIS Dam Inflow Prediction (ADIP) model in this study. The selected study area is the Chungju and Soyang multi-purpose dam watersheds in South Korea. The dam inflow, precipitation and monthly weather forecast information are used as input variables of the models. The training and validation periods of the models are 1987~2010 for Chungju and 1984~2010 for Soyang dam watershed. The testing periods for both watersheds are 2011~2016. The results of training and validation indicate that FADIP has better training ability than ADIP for predicting dam inflow in normal and low flow regimes. In the result of testing, ADIP shows low predictability of dam inflow in the low flow regime due to the model tuning on all flow regime together. However, FADIP demonstrates the improved accuracy over the entire period compared to ADIP, especially during the normal and low flow seasons. It is concluded that FADIP is valuable for the prediction of dam inflow in the case of drought years, and useful for water supply management of the multi-purpose dam.

Application of Streamflow Drought Index using Threshold Level Method (임계수준 방법을 이용한 하천수 가뭄지수의 적용)

  • Sung, Jang Hyun;Chung, Eun-Sung
    • Journal of Korea Water Resources Association
    • /
    • v.47 no.5
    • /
    • pp.491-500
    • /
    • 2014
  • To estimate the severity of streamflow drought, this study introduced the concept of streamflow drought index based on threshold level method and Seomjingang Dam inflow was applied. Threshold levels used in this study are fixed, monthly and daily threshold, The $1^{st}{\sim}3^{rd}$ analysis results of annual drought, the severe hydrological droughts were occurred in 1984, 1988 and 1995 and the drought lasted for a long time. Annual compared to extreme values of total water deficit and duration, the drought occurred in 1984, 1988, 1995 and 2001 was serious level. In the results of study, because a fixed threshold level is not reflect seasonal variability, at least the threshold under seasonal level was required. Threshold levels determined by the monthly and daily were appropriate. The proposed methodology in this study can be used to forecast low-flow and determine reservoirs capacity.

Prediction of the DO concentration using the machine learning algorithm: case study in Oncheoncheon, Republic of Korea

  • Lim, Heesung;An, Hyunuk;Choi, Eunhyuk;Kim, Yeonsu
    • Korean Journal of Agricultural Science
    • /
    • v.47 no.4
    • /
    • pp.1029-1037
    • /
    • 2020
  • The machine learning algorithm has been widely used in water-related fields such as water resources, water management, hydrology, atmospheric science, water quality, water level prediction, weather forecasting, water discharge prediction, water quality forecasting, etc. However, water quality prediction studies based on the machine learning algorithm are limited compared to other water-related applications because of the limited water quality data. Most of the previous water quality prediction studies have predicted monthly water quality, which is useful information but not enough from a practical aspect. In this study, we predicted the dissolved oxygen (DO) using recurrent neural network with long short-term memory model recurrent neural network long-short term memory (RNN-LSTM) algorithms with hourly- and daily-datasets. Bugok Bridge in Oncheoncheon, located in Busan, where the data was collected in real time, was selected as the target for the DO prediction. The 10-month (temperature, wind speed, and relative humidity) data were used as time prediction inputs, and the 5-year (temperature, wind speed, relative humidity, and rainfall) data were used as the daily forecast inputs. Missing data were filled by linear interpolation. The prediction model was coded based on TensorFlow, an open-source library developed by Google. The performance of the RNN-LSTM algorithm for the hourly- or daily-based water quality prediction was tested and analyzed. Research results showed that the hourly data for the water quality is useful for machine learning, and the RNN-LSTM algorithm has potential to be used for hourly- or daily-based water quality forecasting.

An Impact Assessment of Climate and Landuse Change on Water Resources in the Han River (기후변화와 토지피복변화를 고려한 한강 유역의 수자원 영향 평가)

  • Kim, Byung-Sik;Kim, Soo-Jun;Kim, Hung-Soo;Jun, Hwan-Don
    • Journal of Korea Water Resources Association
    • /
    • v.43 no.3
    • /
    • pp.309-323
    • /
    • 2010
  • As climate changes and abnormal climates have drawn research interest recently, many countries utilize the GCM, which is based on SRES suggested by IPCC, to obtain more accurate forecast for future climate changes. Especially, many research attempts have been made to simulate localized geographical characteristics by using RCM with the high resolution data globally. To evaluate the impacts of climate and landuse change on water resources in the Han-river basin, we carried out the procedure consisting of the CA-Markov Chain, the Multi-Regression equation using two independent variables of temperature and rainfall, the downscaling technique based on the RegCM3 RCM, and SLURP. From the CA-Markov Chain, the future landuse change is forecasted and the future NDVI is predicted by the Multi-Regression equation. Also, RegCM3 RCM 50 sets were generated by the downscaling technique based on the RegCM3 RCM provided by KMA. With them, 90 year runoff scenarios whose period is from 2001 to 2090 are simulated for the Han-river basin by SLURP. Finally, the 90-year simulated monthly runoffs are compared with the historical monthly runoffs for each dam in the basin. At Paldang dam, the runoffs in September show higher increase than the ones in August which is due to the change of rainfall pattern in future. Additionally, after exploring the impact of the climate change on the structure of water circulation, we find that water management will become more difficult by the changes in the water circulation factors such as precipitation, evaporation, transpiration, and runoff in the Han-river basin.

The current state and prospects of travel business development under the COVID-19 pandemic

  • Tkachenko, Tetiana;Pryhara, Olha;Zatsepina, Nataly;Bryk, Stepan;Holubets, Iryna;Havryliuk, Alla
    • International Journal of Computer Science & Network Security
    • /
    • v.21 no.12spc
    • /
    • pp.664-674
    • /
    • 2021
  • The relevance of this scientific research is determined by the negative impact of the COVID-19 pandemic on the current trends and dynamics of world tourism development. This article aims to identify patterns of development of the modern tourist market, analysis of problems and prospects of development in the context of the COVID-19 pandemic. Materials and methods. General scientific methods and methods of research are used in the work: analysis, synthesis, comparison, analysis of statistical data. The analysis of the viewpoints of foreign and domestic authors on the research of the international tourist market allowed us to substantiate the actual directions of tourism development due to the influence of negative factors connected with the spread of a new coronavirus infection COVID-19. Economic-statistical, abstract-logical, and economic-mathematical methods of research were used during the process of study and data processing. Results. The analysis of the current state of the tourist market by world regions was carried out. It was found that tourism is one of the most affected sectors from COVID-19, as, by the end of 2020, the total number of tourist arrivals in the world decreased by 74% compared to the same period in 2019. The consequence of this decline was a loss of total global tourism revenues by the end of 2020, which equaled $1.3 trillion. 27% of all destinations are completely closed to international tourism. At the end of 2020, the economy of international tourism has shrunk by about 80%. In 2020 the world traveled 98 million fewer people (-83%) relative to the same period last year. Tourism was hit hardest by the pandemic in the Asia-Pacific region, where travel restrictions are as strict as possible. International arrivals in this region fell by 84% (300 million). The Middle East and Africa recorded declines of 75 and 70 percent. Despite a small and short-lived recovery in the summer of 2020, Europe lost 71% of the tourist flow, with the European continent recording the largest drop in absolute terms compared with 2019, 500 million. In North and South America, foreign arrivals declined. It is revealed that a significant decrease in tourist flows leads to a massive loss of jobs, a sharp decline in foreign exchange earnings and taxes, which limits the ability of states to support the tourism industry. Three possible scenarios of exit of the tourist industry from the crisis, reflecting the most probable changes of monthly tourist flows, are considered. The characteristics of respondents from Ukraine, Germany, and the USA and their attitude to travel depending on gender, age, education level, professional status, and monthly income are presented. About 57% of respondents from Ukraine, Poland, and the United States were planning a tourist trip in 2021. Note that people with higher or secondary education were more willing to plan such a trip. The results of the empirical study confirm that interest in domestic tourism has increased significantly in 2021. The regression model of dependence of the number of domestic tourist trips on the example of Ukraine with time tendency (t) and seasonal variations (Turˆt = 7288,498 - 20,58t - 410,88∑5) it forecast for 2020, which allows stabilizing the process of tourist trips after the pandemic to use this model to forecast for any country. Discussion. We should emphasize the seriousness of the COVID-19 pandemic and the fact that many experts and scientists believe in the long-term recovery of the tourism industry. In our opinion, the governments of the countries need to refocus on domestic tourism and deal with infrastructure development, search for new niches, formats, formation of new package deals in new - domestic - segment (new products' development (tourist routes, exhibitions, sightseeing programs, special rehabilitation programs after COVID) -19 in sanatoriums, etc.); creation of individual offers for different target audiences). Conclusions. Thus, the identified trends are associated with a decrease in the number of tourist flows, the negative impact of the pandemic on employment and income from tourism activities. International tourism needs two to four years before it returns to the level of 2019.