• Title/Summary/Keyword: monotone convex function

Search Result 5, Processing Time 0.017 seconds

MAXIMAL MONOTONE OPERATORS IN THE ONE DIMENSIONAL CASE

  • Kum, Sang-Ho
    • Journal of the Korean Mathematical Society
    • /
    • v.34 no.2
    • /
    • pp.371-381
    • /
    • 1997
  • Our basic concern in this paper is to investigate some geometric properties of the graph of a maximal monotone operator in the one dimensional case. Using a well-known theorem of Minty, we answer S. Simon's questions affirmatively in the one dimensional case. Further developments of these results are also treated. In addition, we provide a new proof of Rockafellar's characterization of maximal monotone operators on R: every maximal monotne operator from R to $2^R$ is the subdifferential of a proper convex lower semicontinuous function.

  • PDF

Sequential Shape Modification for Monotone Convex Function: L2 Monotonization and Uniform Convexifiation

  • Lim, Jo-Han;Lee, Sung-Im
    • Communications for Statistical Applications and Methods
    • /
    • v.15 no.5
    • /
    • pp.675-685
    • /
    • 2008
  • This paper studies two sequential procedures to estimate a monotone convex function using $L_2$ monotonization and uniform convexification; one, denoted by FMSC, monotonizes the data first and then, convexifis the monotone estimate; the other, denoted by FCSM, first convexifies the data and then monotonizes the convex estimate. We show that two shape modifiers are not commutable and so does FMSC and FCSM. We compare them numerically in uniform error(UE) and integrated mean squared error(IMSE). The results show that FMSC has smaller uniform error(UE) and integrated mean squared error(IMSE) than those of FCSC.

VISUALIZATION OF 3D DATA PRESERVING CONVEXITY

  • Hussain Malik Zawwar;Hussain Maria
    • Journal of applied mathematics & informatics
    • /
    • v.23 no.1_2
    • /
    • pp.397-410
    • /
    • 2007
  • Visualization of 2D and 3D data, which arises from some scientific phenomena, physical model or mathematical formula, in the form of curve or surface view is one of the important topics in Computer Graphics. The problem gets critically important when data possesses some inherent shape feature. For example, it may have positive feature in one instance and monotone in the other. This paper is concerned with the solution of similar problems when data has convex shape and its visualization is required to have similar inherent features to that of data. A rational cubic function [5] has been used for the review of visualization of 2D data. After that it has been generalized for the visualization of 3D data. Moreover, simple sufficient constraints are made on the free parameters in the description of rational bicubic functions to visualize the 3D convex data in the view of convex surfaces.

TWO STEP ALGORITHM FOR SOLVING REGULARIZED GENERALIZED MIXED VARIATIONAL INEQUALITY PROBLEM

  • Kazmi, Kaleem Raza;Khan, Faizan Ahmad;Shahza, Mohammad
    • Bulletin of the Korean Mathematical Society
    • /
    • v.47 no.4
    • /
    • pp.675-685
    • /
    • 2010
  • In this paper, we consider a new class of regularized (nonconvex) generalized mixed variational inequality problems in real Hilbert space. We give the concepts of partially relaxed strongly mixed monotone and partially relaxed strongly $\theta$-pseudomonotone mappings, which are extension of the concepts given by Xia and Ding [19], Noor [13] and Kazmi et al. [9]. Further we use the auxiliary principle technique to suggest a two-step iterative algorithm for solving regularized (nonconvex) generalized mixed variational inequality problem. We prove that the convergence of the iterative algorithm requires only the continuity, partially relaxed strongly mixed monotonicity and partially relaxed strongly $\theta$-pseudomonotonicity. The theorems presented in this paper represent improvement and generalization of the previously known results for solving equilibrium problems and variational inequality problems involving the nonconvex (convex) sets, see for example Noor [13], Pang et al. [14], and Xia and Ding [19].

Centralized Clustering Routing Based on Improved Sine Cosine Algorithm and Energy Balance in WSNs

  • Xiaoling, Guo;Xinghua, Sun;Ling, Li;Renjie, Wu;Meng, Liu
    • Journal of Information Processing Systems
    • /
    • v.19 no.1
    • /
    • pp.17-32
    • /
    • 2023
  • Centralized hierarchical routing protocols are often used to solve the problems of uneven energy consumption and short network life in wireless sensor networks (WSNs). Clustering and cluster head election have become the focuses of WSNs. In this paper, an energy balanced clustering routing algorithm optimized by sine cosine algorithm (SCA) is proposed. Firstly, optimal cluster head number per round is determined according to surviving node, and the candidate cluster head set is formed by selecting high-energy node. Secondly, a random population with a certain scale is constructed to represent a group of cluster head selection scheme, and fitness function is designed according to inter-cluster distance. Thirdly, the SCA algorithm is improved by using monotone decreasing convex function, and then a certain number of iterations are carried out to select a group of individuals with the minimum fitness function value. From simulation experiments, the process from the first death node to 80% only needs about 30 rounds. This improved algorithm balances the energy consumption among nodes and avoids premature death of some nodes. And it greatly improves the energy utilization and extends the effective life of the whole network.