
Communications of the Korean Statistical Society Vol. 15, No. 5, 2008, pp. 675–685

Sequential Shape Modification for Monotone
Convex Function: L2 Monotonization and

Uniform Convexification

Johan Lim1), Sungim Lee2)

Abstract

This paper studies two sequential procedures to estimate a monotone convex
function using L2 monotonization and uniform convexification; one, denoted by
FMSC, monotonizes the data first and then, convexifies the monotone estimate;
the other, denoted by FCSM, first convexifies the data and then monotonizes the
convex estimate. We show that two shape modifiers are not commutable and so
does FMSC and FCSM. We compare them numerically in uniform error(UE) and
integrated mean squared error(IMSE). The results show that FMSC has smaller
uniform error(UE) and integrated mean squared error(IMSE) than those of FCSC.

Keywords: Commutability, L2 monotonization, monotone convex function, sequential
estimation, uniform convexification.

1. Introduction

Suppose the observations are from the regression model

Yi = f(Xi) + σεi, (1.1)

where f is a monotone convex function from an interval Ω ⊆ R into R, εi are independent
and identically distributed(i.i.d.) random variables with zero mean and unit variance
and σ > 0. This paper concerns the problem of estimating of f , using the samples
(x1, y1), . . . , (xn, yn) from this model.

This paper studies sequential procedures to estimate the monotone convex function
based on two shape modifiers L2 monotonization and uniform convexification, which
are commonly used for the estimation of monotone convex function. For a given sample{
(xi, yi)

}n

i=1
, the L2 monotonization is defined as the solution to the infinite-dimensional

least square problem

minimize
n∑

i=1

{
yi − f(xi)

}2 subject to f ∈ Fm, (1.2)
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in which Fm is the set of all monotone functions. On the other hand, the uniform
convexification is defined as the solution to the optimization problem

minimize max
i=1,...,n

∣∣yi − f(xi)
∣∣ subject to f ∈ Fc,

in which Fc is the set of all convex functions.
The sequential application of the above two shape modifiers are recently discussed in

Lee et al. (2008). They study the procedure which first monotonizes the raw data and
then convexifies the monotonized outcomes of the first stage. In below, we denote this
FMSC− r which implies the application of FMSC to raw data. They prove the global
convergence rate of the isotonic(monootone) regression estimate and show the estimate
by the given sequential shape modification converges at least as fast as the computed
global convergence rate of the isotonic regression.

In modifying shape sequentially, a very next question we have is the application
order of two shape modifiers. To be specific, we could consider two types of procedures
according to the application order of two shape modifiers; first monotonization and second
convexification(FMSC) which is considered in Lee et al. (2008), or first convexification
and second monotonization(FCSM). We do question that whether the estimates by FMSC
and FCSM are equal to each other or not. Further, if they are not equal, which is better
in estimation error such as uniform error(UE) or integrated mean squared error(IMSE);
UE and IMSE are defined more specifically later.

To answer the questions, in this paper, we show that two shape modifiers are not
commutable to each other and hence, the estimates by FMSC and FCSM are not equal
to each other in general. We further compare them numerically in estimating a monotone
convex function. We apply FMSC and FCSM to estimating raw data and modifying the
shape of kernel smooth estimates. For each of these four trials, we use the following
notations:

• FMSC: The sequential shape modifier that first monotonizes and second convexi-

fixes.

• FCSM: The sequential shape modifier that first convexifies and second monotonizes.

• FMSC− r: The procedure to apply FMSC to raw data.

• FCSM− r: The procedure to apply FCSM to raw data.

• FMSC− s: The procedure to apply FMSC to smooth estimate.

• FCSM− s: The procedure to apply FCSM to smooth estimate.

The remainder of the paper is as follows. We shortly review two shape modifiers in
Section 2. In Section 3, we study the commutability between two shape modifiers of
interest. Section 4 numerically compare FMSC and FCSM in terms of UE and IMSE.
Section 5 applies the methods to analyzing a real example. Section 6 concludes the paper.

2. Monotonization and Convexification

To lay a groundwork for the addressed sequential estimators, we study some results
on L2 monotonization and uniform convexification.
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2.1. L2 approximation with monotone functions

Isotonic(monotone) regression which solves (1.2) dates back to 1950s (Brunk, 1955;
Brunk, 1958) and excellent exposition of the issue appears in Barlow (1972) and later
on in Robertson et al. (1988). Here we briefly review some basic results of isotonic
regression.

The solution to the minimization problem (1.2) is piecewise linear and is given as
the slope of the greatest convex minorant of the cumulative sum diagram by the points(
xk,

∑k
i=1 yi

)
, k = 1, 2, . . . , n. The slope is characterized as

f̂ IS
n (xk) = max

i≤k
min
j≥k

P
(
i, j

)
= min

j≤k
max
i≥k

P
(
i, j

)
= min

j≥k
max
i≤k

P
(
i, j

)
, (2.1)

where

P
(
i, j

)
=

1
j − i + 1

j∑

k=i

yk.

The pooled adjacent violators algorithm can also characterize the solution which itera-
tively modifies the adjacent violators by pooling them. In the algorithms above, f̂ IS

n can
be completely characterized with O(n) operations; see Barlow (1972).

2.2. Uniform approximation with convex functions

We review some results on the constrained uniform approximation problem for a
function f from a closed interval Ω into R:

minimize sup
x∈Ω

∣∣f(x)− f̃(x)
∣∣ subject to f̃ ∈ Fc. (2.2)

This is an infinite-dimensional optimization problem, but we can find an analytic
solution, as will be seen soon. We refer the reader to Kim and Lim (2006) and Lee et al.
(2008) for a more extensive discussion.

For the moment, we assume that f : Ω → R is piecewise linear and continuous with
n break points x1, . . . , xn. Then, the convex envelope fenv is defined by the unique
piecewise linear and continuous function that satisfies the interpolation condition:

fenv(ui) = zi, i = 1, . . . , r,

where {(ui, zi) : i = 1, . . . , r} is the set of the vertices of the lower convex hull of the
break points of f . Then, the function

h = fenv +
‖f − fenv‖∞,Ω

2
= fenv +

maxi=1,...,r {yi − fenv(xi)}
2

is a solution to the constrained uniform approximation problem (2.2) (See Kim and Lim
(2006) for the proof). Note that the break points of this solution and hence the piecewise
linear solution itself, can be characterized in O(n log n) operations by applying the convex
hull algorithm to the break points of f .

When used as an approximation to the function f , the solution h tends to over-
approximate around the boundaries of the end points. To solve this difficulty, Kim and
Lim (2006) suggest a modification of the function fenv + ‖f − fenv‖∞,Ω/2 to reduce the
overestimation error around the boundaries of the end points.
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• Boundary Correction Algorithm

1. Find the lower envelope fenv of f .
2. Find the points xl and xr which satisfies

fenv(xl) +
‖f − fenv‖∞,Ω

2
= f(xl),

fenv(x) +
‖f − fenv‖∞,Ω

2
> f(x), x ≤ xl,

fenv(xr) +
‖f − fenv‖∞,Ω

2
= f(xr),

fenv(x) +
‖f − fenv‖∞,Ω

2
> f(x), x ≥ xr.

3. Of the break points of fenv, find the left adjacent point x̃l of xl and the right
adjacent point of x̃r.

4. Define the function f? : Ω → R by

f?(x) =





max{sl(x), fenv(x)}, if x ≤ xl,

fenv(x) +
‖f − fenv‖∞,Ω

2
, if xl ≤ x ≤ xr,

max{sr(x), fenv(x)}, if x ≥ xr,

in which sl is the affine function that passes through the two points
(

xl, fenv(xl) +
‖f − fenv‖∞,Ω

2

)
,

(
x̃l, fenv(x̃l) +

‖f − fenv‖∞,Ω

2

)

and sr is the affine function that passes through the two points
(

xr, fenv(xr) +
‖f − fenv‖∞,Ω

2

)
,

(
x̃r, fenv(x̃r) +

‖f − fenv‖∞,Ω

2

)
.

The function f? generated by the algorithm above is piecewise linear and hence is com-
pletely characterized by its break points that can be computed by the convex hull al-
gorithm in O(n log n) operations. In what follows, the (uniform) convexification of a
function f means applying the boundary correction algorithm to f .

3. Commutability

In this section, we prove that FMSC and FCSM are not equal to each other, unless
the data points are monotone or convex.

We first introduce some definitions and notations which will be used in the remainder
of the paper.

Let the observations (xi, yi) for i = 1, 2, . . . , n, be independently from the model
(1.1). Let Yn = (y1, y2, . . . , yn) and Xn = (x1, x2, . . . , xn) with x1 ≤ x2 ≤ · · · ≤ xn. By
the monotonicity of Yn on Xn, we imply that

(
xi−xj

)(
yi− yj

) ≥ 0 for any i and j, i.e.,
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the piecewise linear function that connects the points {(xi, yi)} is monotone. Similarly,
we say that the observations are convex on Xn if

(yi − yj)(xk − xj) ≥ (yk − yj)(xi − xj),

whenever xi < xj < xk, i.e., the piecewise linear function, connecting the observed data
points, is convex.

The following two lemmas from Lee et al. (2008) show that for any p ≥ 1, the Lp con-
vexification(or monotonization) of a monotone(or convex) function is still monotone(or
convex).

Lemma 3.1 Let Fc

(
Xn

)
be the set of functions from R to R with the convex property

on Xn and let f̂∗c be the solution to the optimization problem

minimize
n∑

i=1

∣∣yi − fc(xi)
∣∣p subject to fc ∈ Fc

(
Xn

)
, (3.1)

where 1 ≤ p ≤ ∞. Suppose that Yn is monotone on Xn. Then, f̂∗c is monotone on Xn.

Lemma 3.2 Let Fm be the set of functions from R to R with the monotone property
on Xn and let f̂∗m be the solution to the optimization problem

minimize
n∑

i=1

∣∣yi − fm(xi)
∣∣p subject to fm ∈ Fm(Xn), (3.2)

where 1 ≤ p ≤ ∞. Then, f̂∗m is convex on Xn, if Yn is convex on Xn.

The preceding two lemmas provide a sufficient condition when both FCSM and FMSC
yields the same monotone convex function. However this is not true in general.

Theorem 3.1 Both FCSM and FMSC applied to the data points (Xn,Yn) yield the
same monotone convex function if Yn is monotone or convex on Xn. However, the
estimate by FCSM is not equal to that by FMSC in general.

4. Comparison

We carry out a simulation study to compare FMSC and FCSM. In the simulation
study, the design points x1, . . . , xn are taken as xi = i/n and the response data yi are gen-
erated from the model (1.1). We consider three true functions: f(x) = 1(neither strictly
monotone nor strictly convex), f(x) = 2x (strictly monotone but not strictly convex),
f(x) = 2x2 (strictly monotone and convex) on Ω = [ 0, 1 ]. Two error distributions with
mean 0 and variance σ2 are considered for εi: the Gaussian and the double exponential dis-
tribution. The double exponential distribution has the form f(x) = (1/2σ) exp(−|x|/σ).
For each pair of the true function and the error distribution, we generate 100 data sets
and apply the proposed sequential methods to estimating the raw data, FMSC− r and
FCSM− r. We also apply FMSC and FCSM to modifying the shape of kernel estimates,
FMSC− s and FCSM− s. The kernel estimates are computed using Gaussian kernel and
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Table 4.1: Comparison between FMSC and FCSM based on 100 data sets of size n =
50. In the table, “Gauss” and “DE” implies Gaussian error distribution and double
exponential error distribution, respectively. The numbers in the parenthesis are the SEs.
Here, f1(x) = 1, f2(x) = 2x and f3(x) = 2x2

FMSC− r FCSM− r FMSC− s FCSM− s
G σ UE IMSE UE IMSE UE IMSE UE IMSE

0.1 0.0554 0.0024 0.2388 0.0196 0.0662 0.0027 0.0825 0.0034
(0.0078) (0.0024) (0.0130) (0.0054) (0.0057) (0.0004) (0.0073) (0.0005)

f1 0.3 0.1128 0.0093 0.5027 0.0796 0.1198 0.0088 0.1572 0.0108
(0.0102) (0.0033) (0.0168) (0.0075) (0.0087) (0.0010) (0.0146) (0.0013)

0.5 0.1578 0.0153 0.6257 0.1128 0.1499 0.0138 0.1921 0.0179
(0.0030) (0.0009) (0.0030) (0.0009) (0.0125) (0.0018) (0.0166) (0.0027)

0.1 0.2656 0.0159 1.1740 0.3122 0.2063 0.0087 0.2171 0.0091
(0.0120) (0.0040) (0.0143) (0.0091) (0.0098) (0.0007) (0.0097) (0.0007)

f2 0.3 0.4077 0.0534 1.3326 0.3510 0.2718 0.0204 0.2874 0.0211
(0.0143) (0.0075) (0.0183) (0.0122) (0.0107) (0.0017) (0.0110) (0.0017)

0.5 0.4592 0.0716 1.4781 0.3920 0.3058 0.0272 0.3268 0.0285
(0.0157) (0.0091) (0.0205) (0.0155) (0.0157) (0.0024) (0.0172) (0.0025)

0.1 0.2688 0.0284 1.0236 0.3465 0.1744 0.0098 0.1829 0.0098
(0.0110) (0.0058) (0.0122) (0.0097) (0.0059) (0.0009) (0.0057) (0.0008)

f3 0.3 0.4190 0.0611 1.1609 0.3543 0.2491 0.0240 0.2564 0.0218
(0.0122) (0.0068) (0.0177) (0.0117) (0.0101) (0.0023) (0.0102) (0.0020)

0.5 0.4641 0.0798 1.3257 0.3495 0.2913 0.0285 0.2928 0.0261
(0.0146) (0.0085) (0.0205) (0.0135) (0.0116) (0.0028) (0.0111) (0.0024)

FMSC− r FCSM− r FMSC− s FCSM− s
DE σ UE IMSE UE IMSE UE IMSE UE IMSE

0.1 0.0768 0.0037 0.3892 0.0708 0.0553 0.0020 0.0792 0.0032
(0.0077) (0.0020) (0.0135) (0.0067) (0.0039) (0.0002) (0.0065) (0.0005)

f1 0.3 0.1232 0.0091 0.6424 0.1651 0.1203 0.0092 0.1516 0.0129
(0.0103) (0.0038) (0.0189) (0.0126) (0.0097) (0.0012) (0.0124) (0.0020)

0.5 0.1429 0.0153 0.8773 0.3006 0.1515 0.0139 0.2018 0.0193
(0.0115) (0.0045) (0.0208) (0.0162) (0.0122) (0.0016) (0.0134) (0.0022)

0.1 0.2605 0.0186 1.2588 0.3363 0.1851 0.0072 0.1969 0.0078
(0.0121) (0.0045) (0.0168) (0.0111) (0.0078) (0.0005) (0.0073) (0.0006)

f2 0.3 0.3997 0.0529 1.5298 0.4490 0.2957 0.0218 0.2998 0.0211
(0.0163) (0.0091) (0.0217) (0.0168) (0.0140) (0.0021) (0.0131) (0.0018)

0.5 0.4534 0.0778 1.6943 0.5584 0.3401 0.0308 0.3524 0.0327
(0.0153) (0.0083) (0.0237) (0.0188) (0.0145) (0.0026) (0.0144) (0.0026)

0.1 0.3121 0.0423 1.1069 0.3787 0.1837 0.0103 0.1976 0.0107
(0.0114) (0.0056) (0.0168) (0.0117) (0.0081) (0.0009) (0.0073) (0.0009)

f3 0.3 0.4280 0.0758 1.4093 0.4210 0.2575 0.0231 0.2632 0.0220
(0.0144) (0.0081) (0.0212) (0.0160) (0.0098) (0.0022) (0.0097) (0.0018)

0.5 0.4487 0.0712 1.5829 0.5798 0.2972 0.0336 0.3134 0.0390
(0.0158) (0.0092) (0.0245) (0.0196) (0.0135) (0.0028) (0.0143) (0.0045)

optimally chosen bandwidth by leave-one-out cross-validation. In each of 100 data sets,
we compute the uniform error, maxn

i=1 |f̂n(xi)− f(xi)| and the integrated mean squared
error(IMSE), (1/n)

∑n
i=1 |f̂n(xi)− f(xi)|2.

Table 4.1 summarizes the simulation results for n = 50 for three noise level σ = 0.1, 0.2
and 0.3. We also try n = 20 and n = 100 but do not report here, since the results are
similar. The Table 4.1 shows that, in all cases, FMSC is superior to FCSM for both
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Figure 5.1

estimating the raw data and modifying the shape of smooth nonparametric function
estimate. Further, since the true functions are smooth, FMSC− s and FCSM− s has
smaller errors in overall than the FMSC− r and FCSM− r, respectively.

5. Example: Radiation Data Analysis

In this section, we illustrate the proposed procedures by analyzing the radiation data
reported in Davies and Gather (1993). The data set is available from http://lib.stat.
cmu.edu/datasets/. The data has 2001 observations of radiation level taken from a
balloon about 30 kilometers above the surface of the earth. There is a non-decreasing
concave trend in the data, that is degrading increment of the radiation with height. As
stated in Davies and Gather (1991), there are multiple outliers that caused by the fact
that the balloon slowly rotates, causing the ropes from which the measuring instrument
is suspended to cut off the direct radiation from the sun. There outlier will make much
of the difference between FMSC and FCSM. In below, we use the first 200 sequence of
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the entire data set.
We first apply the FMSC and FCSM to raw data and plot the results in Figure

5.1 (a). The 90th observation is very outlier. The uniform convexification is known
to be more sensitive to outliers than L2 monotonization. Thus, if we apply the uniform
convexification first, then the first stage estimate is dragged down to the 90th observation
and in consequence, the FCSM− r is too. The FMSC− r is also influenced by the very
outlier and is slightly smaller than main body of the data. However, it is less sensitive
than the FCSM− r.

We then apply the two sequential shape modifier to smoothed data. The smoothing
procedure is exactly same with that in numerical study in previous section. We plot the
results in in Figure 5.1 (b). The very outlier still gives an influence to the smoothed
estimates. It drag down the estimates(please see “XX” in the figure) and results in
downward bias of both estimates. However, again, the bias of FMSC− s is smaller than
that of FCSM− s.

6. Conclusion

This paper studies two shape modifiers, L2 monotonization and uniform convexifi-
cation. They provide two sequential shape modifiers to estimate a monotone convex
function according the the order of application. We study commutability of two shape
modifiers and show numerically FMSC provides better results that the other, FCSM, in
UE and IMSE.
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Appendix

Proof of Theorem 1

Sufficient condition for FMSC=FCSM

To see this, let f̂FCSM and f̂FMSC be the estimate obtained via FCSM and the one
via FMSC, respectively. Suppose Yn is monotone on Xn. Then, we can see from Lemma
2 that the solution f̂∗c to the problem

minimize
n∑

i=1

∣∣fc(xi)− yi

∣∣p subject to fc ∈ Fc

is monotone. Thus, the monotonization of the first stage convex estimate, f̂∗c is f̂∗c itself,
i.e., f̂FCSM = f̂∗c . On the other hand, since Yn is monotone, the first stage monotone
estimate, f̂∗m is Yn = (y1, y2, . . . , yn) itself. Thus, the estimate by FMSC is given by
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the solution to (A.1), which is equal to f̂∗c . In other words, f̂FMSC = f̂∗c . Hence,
f̂FCSM = f̂FMSC. Through similar arguments, we can show that if Yn is convex on Xn,
then both FCSM and FMSC applied to (Xn, Yn) lead to the same result.

FCSM is not equal to FMSC in general

In this section, by giving a counter example, we show that FCSM and FMSC applied
to the data points (Xn, Yn) do not always provide same answer.

Consider the following data points
{
(x1, y1), . . . , (x5, y5)} = {(0, 0), (1, −2), (2, 0), (3, −100), (4, 0)

}
.

We first solve the monotone regression (1.2) for these data points. A solution f̂∗m on
Ω = [ 0, 4 ] is piecewise linear with break points at 0, 1, 2, 3, 4. At the break points, the
function f̂∗m takes it values as

f̂∗m(x) =




−51

2
, if x = 0, . . . , 3,

0 , if x = 4.

Note that the piecewise function f̂∗m(x) is convex on Ω = [ 0, 4 ]. Thus, f̂FMSC(x) is identi-
cal to f̂∗m(x) and unique. To find f̂FCSM, we find f̂∗c by solving the uniform approximation
problem

minimize max
i=1,...,5

∣∣ yi − f(xi)
∣∣ subject to f ∈ Fc.

Note that the unique best lower convex approximation to Yn, say f∗
c
, is piecewise

linear with break points only at 0, 1, 2, 3, 4 and take its values at the points as

f∗
c
(x) =





0 , if x = 0, 4,

−100
3

, if x = 1,

−200
3

, if x = 2,

−100 , if x = 3.

From the results in Section 2.2, the uniform error by a best uniform approximation is
100/3, a half of that by f∗

c
(x).

Let f̂∗c (x) be a function in the set of best convex approximations to Yn(on Xn),
C(Yn,Fc). Then, −100/3 ≤ f̂∗c (0), f̂∗c (2) ≤ 100/3 and −400/3 ≤ f̂∗c (3) ≤ −200/3, since
the uniform error is 100/3. Also, note from the convexity of f̂∗c (x) that

f̂∗c (0) ≥ f̂∗c (3) +
{

f̂∗c (3)− f̂∗c (2)
}{

0− f̂∗c (2)
}

.

Here the minimum value of the right-hand side is 100/3 at f̂∗c (2) = −100/3 and f̂∗c (3) =
−200/3. Hence, f̂∗c (0) = 100/3 is the only possible value for the uniform error to be
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100/3. In a similar way, we can show that f̂∗c (1) = 0 and C(Yn, Fc) consists of functions
of the form

f̂∗c (x) =





100
3

, if x = 0,

0 , if x = 1,

−100
3

, if x = 2,

−200
3

, if x = 3,

c , if x = 4,

for any c ∈ [−100/3, 100/3 ]. For each f̂ ∈ C(Yn, Fc), we can solve the associated
projection problem to the class of monotone functions Fm and find a monotone convex
function. Let C(M(Yn, Fc)) be the set of resulting monotone convex functions. Using
the complete characterization (2.1) of the solution to the isotonization problem (1.2), we
can see that any piecewise linear function f̂FCSM ∈ C(M(Yn, Fc)) is of the form

f̂FCSM(x) =





−100
3

+
c

3
, if x = 0,

−100
3

+
c

3
, if x = 1,

−100
3

+
c

3
, if x = 2,

−100
3

+
c

3

(
or

c

2

)
, if x = 3 and c,≤ 0 (or c ≥ 0),

c, if x = 4.

Now, it is evident that
f∗

m
6∈ C(M (Yn,Fc)

)
.

This counterexample shows that two sequential shape modification procedures, FCSM
and FMSC do not always yield the same result.
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