• Title/Summary/Keyword: mononuclear phagocytes

Search Result 24, Processing Time 0.025 seconds

The effect of high concentration of glucose on the production of proinflammatory cytokines and nitric oxide induced by lipopolysaccharides from periodontopathic bacteria (고농도의 글루코스가 치주질환 병인균주의 세균내독소에 의한 염증성 cytokine 및 nitric oxide의 생성에 미치는 영향)

  • Kim, Sung-Jo
    • Journal of Periodontal and Implant Science
    • /
    • v.38 no.3
    • /
    • pp.511-520
    • /
    • 2008
  • Purpose: Diabetes mellitus is a clinically and genetically heterogeneous group of metabolic disorders manifested by abnormally high levels of glucose in the blood. Mounting evidence demonstrates that diabetes is a risk factor for gingivitis and periodontitis. The circulating mononuclear phagocytes in diabetic patients with hyperglycemia are chronically exposed to high level of serum glucose. Thus, this study attempted to determine the effect of pre-exposure of monocytes and macrophages to high concentration of glucose on lipopolysaccharide (LPS)-induced production of pro-inflammatory mediators. Material and Methods: For this purpose, cells were cultured in medium containing normal (5 mM) or high glucose (25 mM) for 4-5 weeks before treatment for 24 h with LPS. LPS was highly purified from Porphyromonas gingivalis or Prevotella intermedia by phenol extraction. Result: Results showed that prolonged pre-exposure of cells to high glucose markedly increased LPS-stimulated NO secretion when compared to normal glucose. In addition to NO, high glucose also augmented LPS-stimulated IL-6, IL-8, and TNF-$\alpha$ secretion after cells were exposed to high glucose for 4 weeks. Conclusion: The present study demonstrates that pre-exposure of mononuclear phagocytes with high glucose augments LPS-stimulated production of pro-inflammatory mediators. These findings may explain why periodontal tissue destruction in diabetic patients is more severe than that in non-diabetic individuals.

Immunoenhancing Effect of 1,2-Benzopyrone on the Oxidative Burst Activity to Phagocytic Response of Canine Peripheral Blood Phagocytes (개 말초혈액 탐식세포의 탐식반응에 따른 순간산소 과소비현상에 있어 1,2-benzopyrone의 면역증강효과)

  • 김현아;강지훈;양만표
    • Journal of Veterinary Clinics
    • /
    • v.21 no.3
    • /
    • pp.236-242
    • /
    • 2004
  • 1,2-benzopyrone can stimulate macrophages to increase the ability of phagocytosis. Peripheral blood polymorphonuclear cells (PMN) and macrophages destroy microbial organisms with reactive oxygen species (ROS), called oxidative burst activity (OBA). This study was undertaken to determine whether 1,2-benzopyrone affects the OBA on the phagocytic response of canine peripheral blood phagocytes. The OBA of phagocytes in the addition or absence of latex beads was analyzed by flow cytometry system using dihydrorhodamine 123 (DHR). The direct treatments of 1,2-benzopyrone have no effect on the OBA of peripheral blood mononuclear cells (PBMC), PMN and monocyte-rich cells regardless of addition of latex beads. When latex beads are added to PMN, the OBA of PMN was remarkably enhanced by culture supernatant from PBMC but not PMN treated with 1,2-benzopyrone. Similary, it was also enhanced by human recombinant (hr) $TNF-\alpha.$ However, when latex beads were not added to PMN, its OBA was not enhanced by culture supernatant from either PBMC or PMN treated with 1,2-benzopyrone. The OBA of latex beads-phagocytized PBMC and monocyte-rich cells was not enhanced by culture supernatant from either PBMC or PMN treated with 1,2-benzopyrone. These results strongly suggested that 1,2-benzopyrone has an immunoenhancing effect on the OBA of PMN when phagocytic response occurred only. This enhanced OBA may be mediated through active humoral substance(s), such as $TNF-\alpha,$ produced by PBMC stimulated with 1,2-benzopyrone.

Ketamine Decreases Phagocytic Capacity of Canine Peripheral Blood Phagocytes In Vitro (In Vitro에서 개 말초혈액 탐식세포의 탐식능에 대한 케타민의 효과)

  • Kang, Ji-Houn;Kim, Min-Jun;Yang, Mhan-Pyo
    • Journal of Veterinary Clinics
    • /
    • v.25 no.2
    • /
    • pp.73-78
    • /
    • 2008
  • Ketamine is a non-competitive N-methyl-D-aspartate (NMDA) receptor antagonist and a short-acting general anaesthetic agent for human and veterinary use. We previously reported that treatment with ketamine impairs oxidative burst activity of canine peripheral blood leukocytes. In this study, the effect of ketamine on phagocytic capacity of canine peripheral blood leukocytes was examined in vitro. Phagocytic capacity was analyzed by using a flow cytometry. Ketamine directly decreased the phagocytic capacity of peripheral blood polymorphonuclear cells (PMN) and monocytes but not total peripheral blood mononuclear cells (PBMC). In addition, the phagocytic capacity of PMN and monocytes was inhibited by the ketamine-treated PBMC but not PMN culture supernatant. These results suggest that ketamine has a direct inhibitory effect on the phagocytic capacity of canine peripheral blood phagocytes and involves the production of soluble factor(s) from canine PBMC, which may suppress the phagocytic capacity.

Immunostimulating Effect of 1,2-Benzopyrone on Phagocytic Response of Canine Peripheral Blood Phagocytes (개 말초혈액 탐식세포의 탐식반응에 대한 1,2-benzopyrone의 면역자극 효과)

  • 신정화;나기정;양만표
    • Journal of Veterinary Clinics
    • /
    • v.21 no.1
    • /
    • pp.23-28
    • /
    • 2004
  • 1,2-benzopyrone has been shown to affect on the activation and stimulation of macrophage. To examine the immunostimulating effect of 1,2-benzopyrone on the phagocytic response of canine peripheral blood mononuclear cells (PBMC) as well as polymorphonuclear cells (PMN), the phagocytic activity of phagocytes was analyzed by flow cytometry system using FITC-labelled latex. The 1,2-benzopyrone did not show any direct effect on phagocytic response of PBMC and PMN. But it showed an enhanced effect on the phagocytic response of monocyte-rich cells fractioned by cell size from dot plot profile in flowcytometric cytography of PBMC. The phagocytic activity of these cells was also enhanced by addition of culture supernatant from PBMC treated with 1,2-benzopyrone. Similarly, the phagocytic activity of PMN but not PBMC in the same procedures was enhanced by culture supernatant from PBMC treated with 1,2-benzopyrone. However, the culture supernatant from PMN treated with 1.2-benzopyrone did not show the enhancing effect on phagocytic activity for monocyte-rich cells and PMN. These results, therefore, suggested that enhanced phagocytic activity of canine peripheral blood PMN and monocytes may be mainly mediated by humoral factor(S) released from PBMC treated with 1,2-benzopyrone.

Effect of Egg White Derivatives on Phagocytic Response of Feline Peripheral Blood Phagocytes (고양이 말초혈액 탐식세포의 탐식능에 있어서 계난백유래물질의 효과)

  • 양만표;김기홍
    • Journal of Veterinary Clinics
    • /
    • v.16 no.1
    • /
    • pp.37-41
    • /
    • 1999
  • The immunostimulating effects of egg white derivatives (EWD) on the phagocytic response of feline peripheral blood polymorphonuclear cells (PMN) as well as mono- nuclear cells (MNC) were examined. The phagocytic activity was analyzed by a flow cytometry system. The EWD showed directly an enhanced effect on the phagocytic response of MNC but not PMN. The phagocytic activity of MNC was enhanced by culture supernatant from MNC and PMN treated with EWD, respectively. Similarly, the phagocytic activity of PMN was enhanced by culture supernatant from MNC but not PMN treated with EWD. It was, therefore, indicated that the enhanced phagocytic activity of feline PMN could be mainly mediated by humoral factor(s) released from MNC treated with EWD. These results suggested that EWD could enhance the phagocytosis of feline peripheral blood phagocytes.

  • PDF

Fever (발 열)

  • Lee, Taek Jin;Kim, Dong Soo
    • Clinical and Experimental Pediatrics
    • /
    • v.50 no.2
    • /
    • pp.121-126
    • /
    • 2007
  • Fever has been recognized as a cardinal feature of disease since antiquity, but only recently has the pathophysiology of fever come to be understood. It became clear that the ultimate cause of fever is not a bacterial product (a so-called exogenous pyrogen) but a product of host inflammatory cells (i.e., an endogenous pyrogen). Many studies have demonstrated that mononuclear phagocytes are the principal source of endogenous pyrogen and that a variety of mononuclear cell products can mediate the febrile response. Cytokines are also important as mediators of the acute-phase response to infection and inflammation.

The Lymphocyte Dependent Bactericidal Assay of Human Monocyte and Alveolar Macrophage for Mycobacteria (마이코박테리아에 대한 인체 말초혈액 단핵구와 폐포대식세포의 림프구 의존적 살해능에 관한 연구)

  • Cheon, Seon-Hee;Lee, You-Hyun;Lee, Jong-Soo;Bae, Ki-Sun;Shin, Sue-Yeon
    • Tuberculosis and Respiratory Diseases
    • /
    • v.53 no.1
    • /
    • pp.5-16
    • /
    • 2002
  • Background : Though mononuclear phagocytes serve as the final effectors in killing intracellular Mycobacterium tuberculosis, the bacilli readily survive in the intracellular environment of resting cells. The mechanisms through which cellular activation results in the intracellular killing is unclear. In this study, we sought to explore an in vitro model of a low-level infection of human mononuclear phagocytes with MAC and $H_{37}Ra$ and determine the extent of the lymphocyte dependent cytotoxicity of human monocytes and alveolar macrophages. Materials and Methods : The peripheral monocytes were prepared using the Ficoll gradient method from PPD positive healthy people and tuberculosis patients. The alveolar macrophages were prepared from PPD positive healthy people via a bronchoalveolar lavage. The human mononuclear phagocytes were infected at a low infection rate (bacilli:phagocyte 1:10) with MAC(Mycobacterium avium) and Mycobacterium tuberculosis $H_{37}Ra$. Non-adherent cells(lymphocyte) were added at a 10:1 ratio. After 1,4, and 7 days culture in $37^{\circ}C$, 5% CO2 incubator, the cells were harvested and inoculated in a 7H10/OADC agar plate for the CFU assay. The bacilli were calculated with the CFU/$1{\times}10^6$ of the cells and the cytotoxicity was expressed as the log killing ratio. Results : The intracellular killing of MAC and $H_{37}Ra$ within the monocyte was greater in patients with tuberculosis compared to the PPD positive controls (p<0.05). Intracellular killing of MAC and $H_{37}Ra$ within the alveolar macrophage appeared to be greater than that within the monocytes of the PPD positive controls. There was significant lymphocyte dependent inhibition of intracellular growth of the mycobacteria within the monocytes in both the controls and tuberculosis patients and within the macrophages in the controls(p<0.05). There was no specific difference in the virulence between the MAC and the $H_{37}Ra$. Conclusion : This study is an in vitro model of a low-level infection with MAC and $H_{37}Ra$ of human mononuclear phagocytes. The intracellular cytotoxicity of the mycobacteria within the phagocytic cells was significantly lymphocyte dependent. During the 7 days culture after the intracellular phagocytosis, the actual confinement of the mycobacteria was observed within the monocytes of tuberculosis patients and the alveolar macrophages of the controls as in the case of adding lymphocytes.

Regulatory Mechanism of Lipopolysaccharide(LPS)-Induced Interleukin-8 Gene Expression in Mononuclear Phagocytic Cells (단핵식세포에서 내독소에 의한 인터루킨-8 유전자 발현 조절기전에 관한 연구)

  • Yoo, Chul-Gyu;Suh, Gee-Young;Kim, Young-Whan;Han, Sung-Koo;Shim, Young-Soo;Han, Yong-Chol
    • Tuberculosis and Respiratory Diseases
    • /
    • v.41 no.5
    • /
    • pp.462-474
    • /
    • 1994
  • Background : In acute lung injury, activated neutrophils play an important role in tissue damage. For neutrophils to participate in lung inflammation, chemotactic factors released from mononuclear phagocytes are needed to bring these cells to the local site of inflammation, with interleukin-8 (IL-8) being one of the most specific and important chemotactic factors for neutrophils. IL-8 also induces the expression of adhesion molecules and activates neutrophils to release various inflammatory mediators. Lipopolysaccharide(LPS) is one of the most important causes of adult respiratory distress syndrome and can cause release of many inflammatory cytokines including IL-8 leading to acute lung injury. But little is known about the regulatory mechanism of LPS-induced IL-8 gene expression in mononuclear phagocytes. Method : Human alveolar macrophages(HAM) and peripleral blood monocytes(PBMC) were isolated from healthy volunteers. Time and dose relationship of LPS-induced IL-8 mRNA expression was observed by Northern blot analysis. To evaluate the regulatory mechanism of LPS-induced IL-8 gene expression, pretreatment of actinomycin D(AD, $5{\mu}g/ml$) and cycloheximide(CHX, $5{\mu}g/ml$) was done and Northern blot analysis for IL-8 mRNA and ELISA for immunoreactive IL-8 protein in culture supernatant were performed. Results : 1) In HAM, dose and time dependent LPS-induced IL-8 mRNA expression was observed with peak mRNA level at 8 hours post-stimulation. 2) In PBMC, dose and time dependent LPS-induced IL-8 mRNA expression was also observed with peak mRNA level at 4 hours post-stimulation. 3) AD decreased expression of LPS-induced IL-8 gene expression at both mRNAand protein levels in both types of cells. 4) CHX decreased expression of LPS-induced IL-8 gene expression at protein level in both cell types but in HAM, superinduction of IL-8 mRNA was observed while decreased expression of IL-8 mRNA was observed in PBMC. Conclusion : Time and dose dependent LPS-induced IL-8 gene expression was observed in mononuclear phagocytes which is at least partly regulated pretranslationally. LPS-induced IL-8 mRNA expression in HAM needs no de novo protein synthesis and may be under the control of a labile repressor protein while de novo protein synthesis may be needed in PBMC.

  • PDF

Detection of Phagocytosis-Promoting Factor of Culture Supernatant from Feline Peripheral Blood Mononuclear Cells Cultured with Egg White Derivatives (계난백유래물질로 배양한 고양이 말초혈액 단핵구세포 배양상층액중의 탐식촉진인자 검출)

  • 양만표;김기홍
    • Journal of Veterinary Clinics
    • /
    • v.16 no.1
    • /
    • pp.31-36
    • /
    • 1999
  • The aim of this study is to determine the phagocytosis-promoting factor(s) for feline peripheral blood polymorphonuclear cells (PMN) by culture supernatant from mono-nuclear cells (MNC) treated with egg white derivatives (EWD). The phagocytic activity of PMN was analyzed by a flow cytometry system. The EWD did not show direct effect on the phagocytic response of PMN. The phagocytic activity of PMN was enhanced by culture supernatant from MNC but not PMN treated with EWD. Therefore, it was suggested that the enhanced phagocytic activity of feline PMN could be mediated by humoral factor(s) released from MNC treated with EWD. Thus, the phagocytosis-promoting factor(s) in supernatant fraction from MNC culture treated with EWD were isolated by reverse phase high pressure liquid chromatography. The resulting supernatant fraction on 29.02 minutes of retention time showed high phagocytic activity of PMN. The molecular weight of this supernatant fraction was 16 to 18 kDa when analyzed by capillary electrophoresis. The isoelectric point was pH 5.76 when assessed by ion-exchange chromatography. These results suggest that EWD stimulates feline MNC to elaborate a phagocytosis-promoting factor, 16 to 18 kDa of molecular weight, which could be an important mediator for the enhancement of phagocytic activity of feline peripheral blood phagocytes. Further study will be needed to elucidate this phagocytic factor.

  • PDF