• Title/Summary/Keyword: monodisperse particles

Search Result 106, Processing Time 0.034 seconds

Preparation of Ultra Fine Poly(methyl methacrylate) Microspheres in Methanol-enriched Aqueous Medium

  • Shim, Sang-Eun;Kim, Kijung;Sejin Oh;Soonja Choe
    • Macromolecular Research
    • /
    • v.12 no.2
    • /
    • pp.240-245
    • /
    • 2004
  • Monodisperse PMMA micro spheres are prepared by means of a simple soap-free emulsion polymerization in methanol-enriched aqueous medium in a single step process. The size and uniformity of the microspheres are dependent on the polymerization temperature. In a stable system, the uniformity is improved with the polymerization time. The most uniform and stable micro spheres are obtained under mild agitation speed of 100 rpm at 70$^{\circ}C$. The monodisperse PMMA microspheres in the size range of 1.4-2.0 $\mu\textrm{m}$ having less than 5% size variation are successfully achieved with varying concentrations of monomer and initiator. As the monomer and initiator concentrations increase, the larger micro spheres with enhanced uniformity are obtained. However, the decreased amount of water induces the polydisperse PMMA particles due to the generation of secondary particles.

Synthesis of Polystyrene Nanoparticles with Monodisperse Size Distribution and Positive Surface Charge Using Metal Stearates

  • Kim, Mi-Sun;Kim, Seok-Ki;Lee, Jun-Young;Cho, Seung-Hyun;Lee, Ki-Hoon;Kim, Jun-Kyung;Lee, Sang-Soo
    • Macromolecular Research
    • /
    • v.16 no.2
    • /
    • pp.178-181
    • /
    • 2008
  • Polystyrene (PS) nanospheres with a monodisperse size distribution, positive surface charge and high molecular weight were successfully synthesized using various types of metal stearates in an aqueous NaOH medium. The diameter of the PS nanospheres was controlled from 80 to 450 nm by changing the type of metal stearate. It was also found that controlling the NaOH concentration in solution was important for producing monodisperse PS nanoparticles. The nanospheres prepared with zinc stearate possessed a positive surface charge of 60 to 80 mV, confirming that PS particles were functionalized with metal stearates. It is believed that the metal stearates provide PS particles with not only colloidal stability but also a positive surface charge.

Effect of Crosslinking Agents on the Morphology of Polymer Particles Produced by One-Step Seeded Polymerization

  • Kim, Dong-Hee;Lee, Do-Yang;Lee, Kang-Seok;Choe, Soon-Ja
    • Macromolecular Research
    • /
    • v.17 no.4
    • /
    • pp.250-258
    • /
    • 2009
  • One-step seeded polymerization was used to prepare $7{\sim}10{\mu}m$ of crosslinked monodisperse spheres with four crosslinking agents using $4.68{\mu}m$ poly(methyl methacrylate)(PMMA) seed particles in aqueous-alcoholic media in the absence of the swelling process. The crosslinking agents used were ethylene glycol dimethacrylate(EGDMA), allyl methacrylate(AMA), 1,6-hexanediol diacrylate(HDDA) and trimethylolpropane trimethacrylate(TMPTMA). The effects of the type and concentration of the crosslinking agents on the swelling, pore size, thermal property of the networks and morphology of the particles were studied. The chemical structures and concentrations of the crosslinking agents affected both the swelling ratio and the porosity of the networks. In addition, the chemistry of the reactive vinyl group and chain length of the crosslinking agents affected the stability of the monodisperse particles of the ultimate morphology.

Preparation of Highly Cross-linked, Monodisperse Poly(methyl methacrylate) Microspheres by Dispersion Polymerization; Part I. Batch Processes

  • Lee, Ki-Chang;Lee, Sang-Yun
    • Macromolecular Research
    • /
    • v.15 no.3
    • /
    • pp.244-255
    • /
    • 2007
  • Nucleation is the most sensitive stage in the preparation of highly cross-linked, monodisperse microspheres by dispersion polymerization, since the addition of a small amount of cross-linker results in particle deformation and coagulation. To overcome these problems, $5\;{\mu}m$ poly(methyl methacrylate) seed particles prepared by dispersion polymerization were used in the preparation of mono disperse, cross-linked PMMA particles containing up to 7 wt% divinylbenzene by seeded batch dispersion polymerization. Spherical particles with a narrow size distribution containing up to 8 wt% of EGDMA were prepared by seeded multi-batch dispersion polymerization processes. These particles were identified by scanning electron microscopy and DSC.

Direct Analysis of Aerosol Particles by Atomic Emission and Mass Spectrometry

  • Kawaguchi, Hiroshi;Nomizu, Tsutomu;Tanaka, Tomokazu;Kaneco, Satoshi
    • Analytical Science and Technology
    • /
    • v.8 no.4
    • /
    • pp.411-418
    • /
    • 1995
  • A method for the direct determination of elemental content in each of aerosol particles by inductively coupled plasma atomic emission (ICP-AES) or mass spectrometry (ICP-MS) is described. This method is based upon the introduction of diluted aerosol into an ICP and the measurement of either the flash emission intensities of an atomic spectral line or ion intensities. A pulse-height analyzer is used for the measurement of the distribution of the elemental content. In order to calibrate the measuring system, monodisperse aerosols are used. The potentials of the method are shown by demonstrating the copper emission signals from the aerosols generated at a small electric switch, a study of the relation between the decreasing rate of particle number density and particle size, and measurements of calcium contents in the individual biological cells.

  • PDF

An Experimental Study on Composition Characteristics of SiO$_2$/TiO$_2$/Multicomponent Particle Generated in a Coflow Diffusion Flame (화염중 발생하는 SiO$_2$/TiO$_2$/다성분입자의 조성특성에 관한 실험적 연구)

  • Kim, Tae-O;Seo, Jeong-Su;Choe, Man-Su
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.25 no.9
    • /
    • pp.1175-1182
    • /
    • 2001
  • Chemical compositions of polydisperse SiO$_2$/TiO$_2$multicomponent aggregates were measured for different heights from the burner surface and different mobility diameters of aggregates. SiO$_2$/TiO$_2$multicomponent particles were generated in a hydrogen/oxygen coflow diffusion flame from two sets of precursors: TTIP(titanium tetraisopropoxide), TEOS(tetraethylorthosilicate). To maintain 1:1 mole ratio of TTIP:TEOS vapor, flow rate of carrier gas $N_2$was fixed at 0.6lpm for TTIP, at 0.1lpm for TEOS. In-situ sampling probe was used to supply particles into DMA(differential mobility analyzer) which was calibrated with using commercial DMA(TSI, model 3071A) and classifying monodisperse multicomponent particles. Classified monodisperse particles were collected with electrophoretic collector. The distributions of composition from particles to particle were determined using EDS(energy dispersive spectrometry) coupled with TEM(transmission electron microscope). The chemical(atomic) compositions of classified monodisperse particle were obtained for different heights; z=40mm, 60mm, 80mm. The results suggested that the chemical(atomic) composition of SiO$_2$decreased with the height from burner surface and the composition of SiO$_2$and TiO$_2$approached to the value of 1 to 1 fat downstream. It is also found that the composition of SiO$_2$decreases as the mobility diameter of aggregate increases.

Design and Performance Evaluation of a Diode Type Corona Charger for Real-Time Measurement of the Submicron Aerosol (실시간 미세입자 측정을 위한 다이오드형 코로나 하전기의 설계 및 성능평가)

  • Cho, Myung-Hoon;Ji, Jun-Ho;Park, Dong-Ho;Bae, Gwi-Nam;Hwang, Jung-Ho
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.28 no.9
    • /
    • pp.1066-1074
    • /
    • 2004
  • With a diode corona charger, which is a component of ELPI(Electrical Low Pressure Impactor), aerosol particles are charged to make electrical detection possible before they are collected by the impactor. We designed and evaluated two cylindrical corona chargers, each of which had a central corona needle electrode. For the performance evaluation of each corona charger the polydisperse dioctyl sebacate(DOS) particles, with diameters of 0.1∼0.8 $\mu$m and NaCl particles, smaller than 0.1$\mu$m, were used. The particles were then led through an electrostatic classifier (TSI model 3081) to classify monodisperse aerosol with minimal size deviation. After evaluating the wall loss of the particles in the corona charger, we measured the product of penetration and number of charges, Pㆍn, to evaluate the corona charger efficiency at high positive voltages of 4, 5, 6 kV.

Effect of Reaction Parameters on Silica Nanoparticles Synthesized by Sol-gel Method (졸-겔법에 의한 단분산 실리카 나노입자 합성에 미치는 반응변수의 영향)

  • Lim, Young-Hyun;Kim, Do Kyung;Jeong, Young-Keun
    • Journal of Powder Materials
    • /
    • v.23 no.6
    • /
    • pp.442-446
    • /
    • 2016
  • The sol-gel method is the simplest method for synthesizing monodispersed silica particles. The purpose of this study is to synthesize uniform, monodisperse spherical silica nanoparticles using tetraethylorthosilicate (TEOS) as the silica precursor, ethanol, and deionized water in the presence of ammonia as a catalyst. The reaction time and temperature and the concentration of the reactants are controlled to investigate the effect of the reaction parameters on the size of the synthesized particles. The size and morphology of the obtained silica particles are investigated using transmission electron microscopy and particle size analysis. The results show that monodispersed silica particles over a size range of 54-504 nm are successfully synthesized by the sol-gel method without using any additional process. The nanosized silica particles can be synthesized at higher TEOS/$H_2O$ ratios, lower ammonia concentrations, and especially, higher reaction temperatures.

An Experimental Study on Composition Characteristics of $SiO_2/TiO_2$ Multicomponent Particle in Coflow Diffusion Flame (화염중 발생하는 $SiO_2/TiO_2$ 다성분입자의 조성특성에 관한 실험적 연구)

  • Kim, Tae-Oh;Suh, Jeong-Soo;Choi, Man-Soo
    • Proceedings of the KSME Conference
    • /
    • 2000.04b
    • /
    • pp.441-446
    • /
    • 2000
  • Chemical compositions of monodisperse $SiO_2/TiO_2$ multicomponent aggregates were measured for different heights from the burner surface and different mobility diameters of aggregates. $SiO_2/TiO_2$ multicomponent particles were generated in a hydrogen/oxygen coflow diffusion flame from two sets of precursors: TTIP (titanium tetraisopropoxide), TEOS(tetraethylorthosilicate). To maintain 1:1 mole ratio of TTIP:TEOS vapor theoretically, flow rate of carrier gas $N_2$ was fixed at 0.61pm for TTIP, at 0.11pm for TEOS. In situ sampling probe was used to supply particles into differential mobility analyzer(DMA) which was calibrated with using commercial DMA(TSI 3071A) and classifying monodisperse multicomponent particles. Classified particles were collected with electrophoretic collector. The distributions of composition from particle to particle were determined using EDS (energy dispersive spectrometry) coupled with TEM (transmission electron microscope). The chemical (atomic) compositions of classified monodisperse particle were obtained for different heights; z=40mm, 60mm, 80mm. The results suggested that the atomic composition of $SiO_2$ decreased with the height from burner surface and the composition of $SiO_2$ and $TiO_2$ approached to the value of 1 to 1 in far downstream. It is also found that the composition of $SiO_2$ decreases as the mobility diameter of aggregate increases.

  • PDF

Dilutant flow characteristics model of coarse particle suspensions with uniform size distribution

  • Ookawara, Shinichi;Ogawa, Kohei
    • Korea-Australia Rheology Journal
    • /
    • v.15 no.1
    • /
    • pp.35-41
    • /
    • 2003
  • It is expected that particle size distribution of any portion obtained through screening, is of more uniform than that of the original mixture, typically following such as log-normal, Rosin-Rammler distributions and so on. In this study, therefore, a new relation between parameters of the uniform distribution and flow characteristics of the coarse particle suspensions is derived based on the continuous polydisperse model (Ookawara and Ogawa, 2002b), which is derived from the discrete polydisperse model (Ookawara and Ogawa,2002a). The derived model equation predicts a linear increase of viscosity with shear rate, viz., dilutant flow characteristics. Further, the increase of viscosity is expected to be proportional to the square of volume fraction of particles, and to show the linear dependency on density and average diameter of particles. It is also shown that the uniform distribution model includes additional term that expresses the effect of distribution width. For verification of the model, the experimental results of Clarke (1967) are cited as well as in our previous work for the monodisperse model (Ookawara and Ogawa,2000) since most parameters were varied independently in his work. It is suggested that the newly introduced term expands the applicable range compared with the monodisperse model.