• Title/Summary/Keyword: monitoring robot

Search Result 298, Processing Time 0.031 seconds

Remote Navigation and Monitoring System for Mobile Robot Using Smart Phone (스마트 폰을 이용한 모바일로봇의 리모트 주행제어 시스템)

  • Park, Jong-Jin;Choi, Gyoo-Seok;Chun, Chang-Hee;Park, In-Ku;Kang, Jeong-Jin
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.11 no.6
    • /
    • pp.207-214
    • /
    • 2011
  • In this paper, using Zigbee-based wireless sensor networks and Lego MindStorms NXT robot, a remote monitoring and navigation system for mobile robot has been developed. Mobile robot can estimate its position using encoder values of its motor, but due to the existing friction and shortage of motor power etc., error occurs. To fix this problem and obtain more accurate position of mobile robot, a ultrasound module on wireless sensor networks has been used in this paper. To overcome disadvantages of ultrasound which include straightforwardness and narrow detection coverage, we rotate moving node attached to mobile robot by $360^{\circ}$ to measure each distance from four fixed nodes. Then location of mobile robot is estimated by triangulation using measured distance values. In addition, images are sent via a network using a USB Web camera to smart phone. On smart phones we can see location of robot, and images around places where robot navigates. And remote monitoring and navigation is possible by just clicking points at the map on smart phones.

Implementation of Web Based Multi-Axis Force Control & Monitoring Systems for an intelligent robot (지능형 로봇을 위한 웹 기반 다축 힘 제어 및 감시시스템 구현)

  • Lee, Hyun-Chul;Nam, Hyun-Do;Kang, Chul-Goo
    • Proceedings of the KIEE Conference
    • /
    • 2004.11c
    • /
    • pp.33-35
    • /
    • 2004
  • In this paper, web based monitoring systems are implemented for multi-axis force control systems of an intelligent robot. Linux operating systems are ported to an embedded system which Include a Xscale processor to implement a web based monitoring system. A device driver is developed to receive data from multi-axis force sensors of intelligent robots. To control this device driver, a socket program for Labview is also developed.

  • PDF

Development of Stable Walking Robot for Accident Condition Monitoring on Uneven Floors in a Nuclear Power Plant

  • Kim, Jong Seog;Jang, You Hyun
    • Nuclear Engineering and Technology
    • /
    • v.49 no.3
    • /
    • pp.632-637
    • /
    • 2017
  • Even though the potential for an accident in nuclear power plants is very low, multiple emergency plans are necessary because the impact of such an accident to the public is enormous. One of these emergency plans involves a robotic system for investigating accidents under conditions of high radiation and contaminated air. To develop a robot suitable for operation in a nuclear power plant, we focused on eliminating the three major obstacles that challenge robots in such conditions: the disconnection of radio communication, falling on uneven floors, and loss of localization. To solve the radio problem, a Wi-Fi extender was used in radio shadow areas. To reinforce the walking, we developed two- and four-leg convertible walking, a floor adaptive foot, a roly-poly defensive falling design, and automatic standing recovery after falling methods were developed. To allow the robot to determine its location in the containment building, a bar code landmark reading method was chosen. When a severe accident occurs, this robot will be useful for accident condition monitoring. We also anticipate the robot can serve as a workman aid in a high radiation area during normal operations.

Development of Multi-Attitude Monitoring System for Agricultural Robots (농업 로봇 용 다중 자세 모니터링 시스템 개발)

  • Kwon, Ik Hyun;Kim, Cheong Worl;Kim, Sung Deuk;Lee, Young Tae
    • Journal of the Semiconductor & Display Technology
    • /
    • v.17 no.3
    • /
    • pp.65-69
    • /
    • 2018
  • In this paper, we have developed a multi-attitude monitoring system for running farm robots for field farming. There are many agricultural robots that can select work modules for various tasks. In order to control the stable attitude of agricultural robots connected to each other, we developed a system for monitoring the roll angle and pitch angle difference by fusing the information of the attitude monitoring system mounted on the robot mainframe and the work module. The developed attitude monitoring system showed resolution below 1 degree. In this paper, roll angle difference of 20 degrees and 60 degrees is measured with a multi - attitude monitoring system.

Protocol Design for Fire Receiver­based Fire Detection Robots (화재수신기 기반의 화재감시로봇을 위한 프로토콜 설계)

  • Lim, Jong-Cheon;Lee, Jae-Min
    • The Journal of Korea Institute of Information, Electronics, and Communication Technology
    • /
    • v.11 no.4
    • /
    • pp.452-459
    • /
    • 2018
  • Conventional fire fighting robots are controlled by a remote control to monitor the fire scene or to suppress the fire. However, this method has a problem that it takes a long time to prepare robot and input it to fire place in the golden time after the fire, so that it can not sufficiently serve as a fire fighting robot. Using the autonomous driving fire monitoring robot, when a fire signal is generated, in conjunction with a fire receiver a moving robot takes a video of the fire scene and delivers the image to the fire department, so that the fire fighter can decide if it is real fire or not. Thereby it is possible to prevent a sudden spread of an accident by providing a quick judgment opportunity and at the same time suppressing the fire early. In this paper, we propose an architecture of the autonomous mobile fire monitoring robot and the communication protocol required for the robot to work with the fire receiver. A communication protocol is designed to control multiple fire monitoring robots in real time, and a communication with a fire receiver is designed as a hierarchical network to serve as an interface of an Ethernet network using wireless Wi-Fi. The fire monitoring robot and the wireless communication of the fire receiving period are implemented and the effectiveness of the operation is confirmed through the field test.

Implementation of Home Monitoring System Using a Vacuum Robot with Wireless Router (유무선공유기와 청소로봇을 이용한 홈 모니터링 시스템의 구현)

  • Jeon, Byung-Chan;Choi, Gyoo-Seok;Kang, Jeong-Jin
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.8 no.5
    • /
    • pp.73-80
    • /
    • 2008
  • The recent trend in home network system includes intelligent home environments that remote monitoring and control service is achieved without restrictions by device types, time, and place. Also the use of a vacuum robot in homes is gradually generalized on account of the convenience of the use. In this paper, we proposed and realized new home-monitoring system with the employment of an self-movement robot as one trial for realizing an intelligent home under home network environment. The proposed system can freely monitor every where in home, because the system effectively overcame the surveillance limitations of the existing monitoring system by attaching a Wireless Router and WebCam to a commercial vacuum robot. The outdoor users of this system can readily monitor any place which they want to supervise by controlling a vacuum robot with mobile telecommunication devices such as PDA. The wireless router installed with Linux operation system "OpenWrt" made it possible for the system users to transmit images and to control a vacuum robot with RS-232 communication.

  • PDF

A Mobile Robot for Remote Inspection of Radioactive Waste (방사선폐기물 원격감시용 이동로봇)

  • 서용칠;김창회;조재완;최영수;김승호
    • Proceedings of the Korean Radioactive Waste Society Conference
    • /
    • 2004.06a
    • /
    • pp.430-432
    • /
    • 2004
  • Tele-operation and remote monitoring techniques are essential and important technologies for the inspection and maintenance of the radioactive waste. A mobile robot has been developed for the application of remote monitoring and inspection of nuclear facilities, where human access is limited because of the high-level radioactive environments, The mobile robot was designed with reconfigurable crawler type of wheels attached on the front and rear side in order to pass through the ditch, The extendable mast, mounted on the mobile robot, car be extended up to 8 m vertically. The robust controller for radiation is designed in focus on electric components to prevent abnormal operation in a highly radioactivated area during reactor operation, This robot system will enhance the reliability of nuclear power facilities, and cope with the unexpected radiation accident.

  • PDF

Bio-inspired robot swarm control algorithm for dynamic environment monitoring

  • Kim, Kyukwang;Kim, Hyeongkeun;Myung, Hyun
    • Advances in robotics research
    • /
    • v.2 no.1
    • /
    • pp.1-11
    • /
    • 2018
  • To monitor the environment and determine the source of a pollutant gradient using a multiple robot swarm, we propose a hybrid algorithm that combines two bio-inspired algorithms mimicking chemotaxis and pheromones of bacteria. The algorithm is implemented in virtual robot agents in a simulator to evaluate their feasibility and efficiency in gradient maps with different sizes. Simulation results show that the chemotaxis controller guided robot agents to the locations with higher pollutant concentrations, while the pheromone marked in a virtual field increased the efficiency of the search by reducing the visiting redundancy. The number of steps required to reach the target point did not increase proportionally as the map size increased, but were less than those in the linear whole-map search method. Furthermore, the robot agents could function with simple sensor composition, minimum information about the map, and low calculation capacity.

Integrated Fire Monitoring System Based on Wireless Multi-Hop Sensor Network and Mobile Robot (무선 멀티 홉 센서 네트워크와 이동로봇을 이용한 통합 화재 감시 시스템)

  • Kim, Tae-Hyoung;Seo, Gang-Lae;Lee, Jae-Yeon;Lee, Won-Chang
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.16 no.2
    • /
    • pp.114-119
    • /
    • 2010
  • Network technology has been developed rapidly for digital service in these days. ZigBee, one of the IEEE 802.15.4 protocols, supporting local communication has become the core technology in the wireless network area. In this paper we designed an integrated fire monitoring system using a mobile robot and the ZigBee sensor nodes which are deployed to monitor fires. When a fire breaks out, the image information of the scene of a fire is transmitted by an autonomous mobile robot and we also monitor the current position of the robot. Furthermore, the data around the place where the fire breaks out and the positions of the sensor nodes can be transmitted to a server via the multi-hop communication in the real time.

A Dual Radiation Monitoring System Ror Robot Working in High Radiation Field (고방사선장내 작업 로봇용 이중 방사선 감지 시스템)

  • Lee Nam-Ho;Cho Jai-Wan;Kim Seung-Ho
    • The Transactions of the Korean Institute of Electrical Engineers D
    • /
    • v.54 no.9
    • /
    • pp.556-558
    • /
    • 2005
  • The effect of high irradiation on inspection systems in a nuclear power plant can be severe, especially to electronic components such as control hoards. The effect may lead to a critical malfunction or trouble to a underwater robot for inspection and maintenance of nuclear reactor. However, if information on the total accumulated dose on the sensitive parts of the robot is available, a prediction of robot's behavior in radiation environments becomes possible. To know how much radiation the robot has encountered, a dosimeter to measure the total accumulated dose is necessary. This paper describes the development effort of a dual radiation monitoring system using a SiC diode as a dose-rate meter and a p-type power MOSFET as a dose meter. This attempt using two sensors which detect same radiation improves reliability and stability at high intensity radiation detection in nuclear facilities. It uses the concept of diversity and redundancy.