• Title/Summary/Keyword: monitoring measurement system

Search Result 1,539, Processing Time 0.026 seconds

The Modeling of the Differential Measurement of Air Pressure for Non-intrusive Sleep Monitoring Sensor System

  • Chee, Young-Joon;Park, Kwang-Suk
    • Journal of Biomedical Engineering Research
    • /
    • v.26 no.6
    • /
    • pp.373-381
    • /
    • 2005
  • The respiratory and heart beat signals are the fundamental physiological signals for sleep monitoring in the home. Using the air mattress sensor system, the respiration and heart beat movements can be measured without any harness or sensor on the subject's body which makes long term measurement difficult and troublesome. The differential measurement technique between two air cells is adopted to enhance the sensitivity. The concept of the balancing tube between two air cells is suggested to increase the robustness against postural changes during the measurement period. With this balancing tube, the meaningful frequency range could be selected by the pneumatic filter method. The mathematical model for the air mattress and balancing tube was suggested and the validation experiments were performed for step and sinusoidal input. The results show that the balancing tube can eliminate the low frequency component between two cells effectively. This technique was applied to measure the respiration and heart beat on the bed, which shows the potential applications for sleep monitoring device in home. With the analysis of the waveform, respiration intervals and heart beat intervals were calculated and compared with the signal from conventional methods. The results show that the measurement from air mattress with balancing tube can be used for monitoring respiration and heart beat in various situations.

Feasibility Study on the Landfill Monitoring and Leakage Detection System

  • Park, Jun-Boum;Kwon, Ki-Bum;Oh, Myoung-Hak;Mishra, Anil Kumar
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2007.09a
    • /
    • pp.558-569
    • /
    • 2007
  • It is important to obtain real-time data from long-term monitoring of landfills and develop leachate leakage detection system for the integrated management of landfills. A novel real time monitoring system and early leakage detection system was suggested in this study. The suggested monitoring system is composed of two parts; (1) a set of moisture sensors which monitor the areas surrounding the landfill, and (2) a set of moisture and temperature sensors which monitor the landfill inside. For the assessment for landfills stabilization, real-time monitoring system was evaluated in dry and wet cell of pilot-site. In addition, the grid-net electrical conductivity measurement system was also suggested as early leakage detection system. In this study, the field applicability of suggested systems was evaluated through pilot-scale field tests. The results of pilot-scale field model tests indicate that the grid-net electrical conductivity measurement method can be applicable to the detection of landfill leachate at the initial stage of intrusion, and thus has a potential for monitoring leachate leakage at waste landfills.

  • PDF

The Real-time Health Monitoring System of a Cable-stayed Bridge Based on Non-destruction Measurement (비파괴계측에 의한 사장교의 공용간 상시안전감시시스템)

  • Choi, Man-Yong;Kang, Kyung-Koo;Kim, Jong-Woo
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.22 no.3
    • /
    • pp.239-245
    • /
    • 2002
  • Many civil and infrastructures continue to be used despite aging and the associated potential for damage accumulation. Therefore, the ability to monitor the health of these systems is becoming increasingly important. The purpose of this paper is to propose a real-time health monitoring system of cable-stayed bridge, based-on non-destructive measurement. And also this paper focuses on the safety assessment for bridge from health monitoring system to accomplish this safety assesment. Using the proposed health monitoring system, it helps bridge maintenance and reduces the economic cost of a life-cycle costs. Also it give important data to develop the design and analysis method for cable-stayed bridges.

Temperature Monitoring System of Power MOSFET for IPCM (지능형 전력제어모듈을 위한 온도 모니터링 시스템)

  • Choi Nak-Gwon;Kim Ki-Hyun;Kim Hyoung-Woo;Seo Kil-Soo;Kim Nam-Kun
    • The Transactions of the Korean Institute of Electrical Engineers C
    • /
    • v.55 no.1
    • /
    • pp.20-25
    • /
    • 2006
  • We suggest a novel temperature detection method utilized in temperature monitoring system. Suggested method detects temperature variation by using $R_{ds(on)}$ characteristics of MOSFET, while conventional methods are using extra devices such as a temperature sensor or an over-temperature detection transistor. For voltage detection between drain and source, 10 bits resolution ADC is needed. Therefore possible measurement signal range is about ten mV. If detected temperature's voltage exceed protection temperature's voltage then controller generates OT (Over Temperature) signal to stop MOSFET's trigger signal. Whole process of measurement is controlled by software. Experimental results show that the developed temperature monitoring system can provide the suitable temperature monitoring method and difference between detected and data sheet value of the suggested system is about $3\%$.

Development of unmanned hovercraft system for environmental monitoring (환경 모니터링을 위한 무인 호버크래프트 시스템 개발)

  • Sung-goo Yoo;Jin-Taek Lim
    • The Journal of the Convergence on Culture Technology
    • /
    • v.10 no.2
    • /
    • pp.525-530
    • /
    • 2024
  • The need for an environmental monitoring system that obtains and provides environmental information in real time is increasing. In particular, in the case of water quality management in public waters, regular management must be conducted through manual and automatic measurement by law, and air pollution also requires regular measurement and management to reduce fine dust and exhaust gas in connection with the realization of carbon neutrality. In this study, we implemented a system that can measure and monitor water pollution and air pollution information in real time. A hovercraft capable of moving on land and water simultaneously was used as a measurement tool. Water quality measurement and air pollution measurement sensors were installed on the hovercraft body, and a communication module was installed to transmit the information to the monitoring system in real time. The structure of a hovercraft for environmental measurement was designed, and a LoRa module capable of low-power, long-distance communication was applied as a real-time information transmission communication module. The operational performance of the proposed system was confirmed through actual hardware implementation.

Abdominal Wall Motion-Based Respiration Rate Measurement using An Ultrasonic Proximity Sensor (복부 움직임에 따른 초음파 근접센서를 이용한 호흡측정에 관한 연구)

  • Min, Se-Dong;Kim, Jin-Kwon;Shin, Hang-Sik;Yun, Young-Hyun;Lee, Chung-Keun;Lee, Jeong-Whan;Lee, Myoung-Ho
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.58 no.10
    • /
    • pp.2071-2078
    • /
    • 2009
  • In this paper, we proposed a non-contact respiration measurement system with ultrasonic proximity sensor. Ultrasonic proximity sensor approach of respiration measurement which respiration signatures and rates can be derived in real-time for long-term monitoring is presented. 240 kHz ultrasonic sensor has been applied for the proposed measurement system. The time of flight of sound wave between the transmitted signal and received signal have been used for a respiration measurement from abdominal area. Respiration rates measured with the ultrasonic proximity sensor were compared with those measured with standard techniques on 5 human subjects. Accurate measurement of respiration rate is shown from the 50 cm measurement distance. The data from the method comparison study is used to confirm the performance of the proposed measurement system. The current version of respiratory rate detection system using ultrasonic can successfully measure respiration rate. The proposed measurement method could be used for monitoring unconscious persons from a relatively close range, avoiding the need to apply electrodes or other sensors in the correct position and to wire the subject to the monitor. Monitoring respiration using ultrasonic sensor offers a promising possibility of non-contact measurement of respiration rates. Especially, this technology offers a potentially inexpensive implementation that could extend applications to consumer home-healthcare and mobile-healthcare products. Further advances in the sensor design, system design and signal processing can increase the range of the measurement and quality of the rate-finding for broadening the potential application areas of this technology.

Development of LVDT-Based Measuring System of the Cylinder Liner Wear for Marine Diesel Engines and Its Performance Evaluation (LVDT를 이용한 선박용 디젤 엔진의 실린더 라이너 마모 계측시스템 개발 및 성능평가)

  • Ha, Yun-Su
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.35 no.6
    • /
    • pp.829-834
    • /
    • 2011
  • This paper introduces a new system which measures abrasion quantity of cylinder liners of large-scale marine diesel engines. The proposed system consists of three parts; measurement part where an LVDT, a temperature sensor, a camera and LED for lighting control are installed, monitoring part which accomplishes measurement command transmission and monitoring based on PC or notebook, and master control part which controls the measurement part and transfers measurement data to the monitoring part. The accuracy of the developed system is compared with that of an internal micrometer with 1/100 mm accuracy.

Multi-point displacement monitoring of bridges using a vision-based approach

  • Ye, X.W.;Yi, Ting-Hua;Dong, C.Z.;Liu, T.;Bai, H.
    • Wind and Structures
    • /
    • v.20 no.2
    • /
    • pp.315-326
    • /
    • 2015
  • To overcome the drawbacks of the traditional contact-type sensor for structural displacement measurement, the vision-based technology with the aid of the digital image processing algorithm has received increasing concerns from the community of structural health monitoring (SHM). The advanced vision-based system has been widely used to measure the structural displacement of civil engineering structures due to its overwhelming merits of non-contact, long-distance, and high-resolution. However, seldom currently-available vision-based systems are capable of realizing the synchronous structural displacement measurement for multiple points on the investigated structure. In this paper, the method for vision-based multi-point structural displacement measurement is presented. A series of moving loading experiments on a scale arch bridge model are carried out to validate the accuracy and reliability of the vision-based system for multi-point structural displacement measurement. The structural displacements of five points on the bridge deck are measured by the vision-based system and compared with those obtained by the linear variable differential transformer (LVDT). The comparative study demonstrates that the vision-based system is deemed to be an effective and reliable means for multi-point structural displacement measurement.

A Study on Real-Time Slope Monitoring System using 3-axis Acceleration

  • Yoo, So-Wol;Bae, Sang-Hyun
    • Journal of Integrative Natural Science
    • /
    • v.10 no.4
    • /
    • pp.232-239
    • /
    • 2017
  • The researcher set up multiple sensor units on the road slope such as national highway and highway where there is a possibility of loss, and using the acceleration sensor built into the sensor unit the researcher will sense whether the inclination of the road slope occur in real time, and Based on the sensed data, the researcher tries to implement a system that detects collapse of road slope and dangerous situation. In the experiment of measuring the error between the actual measurement time and the judgment time of the monitoring system when judging the warning of the sensor and falling rock detection by using the acceleration sensor, the error between measurement time and the judgment time at the sensor warning was 0.34 seconds on average, and an error between measurement time and judgment time at falling rock detection was 0.21 seconds on average. The error is relatively small, the accuracy is high, and thus the change of the slope can be clearly judged.

The Development of Offshore Wind Resource Measurement System and Remote Monitoring System (해상기상관측 시스템 및 실시간 원격 모니터링시스템 개발)

  • Ko, Suk-Whan;Jang, Moon-Seok;Lee, Youn-Seop
    • Journal of the Korean Solar Energy Society
    • /
    • v.31 no.6
    • /
    • pp.72-77
    • /
    • 2011
  • The purpose for installation of offshore weather station is a measurement of wind resources and so on. If weather station is operated, it will be possible to analysis for wind resource and arrangement of wind farm by using measured data. In this paper, we carried out the development of offshore wind resource measurement system for measuring offshore wind resource. Also, In order to monitor for real-time wind data with 1 Hz, we installed the wireless transmission system. All wind characteristic data are sent to the server PC through the this system is connected outport of DataLogger. Transmitted wind data were used in order to look at in the Web-page and tablet PC on a real time basis in a graph. In this paper, we will introduce about the wind resource measurement and remote monitoring system that is the result of study.