DOI QR코드

DOI QR Code

Development of unmanned hovercraft system for environmental monitoring

환경 모니터링을 위한 무인 호버크래프트 시스템 개발

  • 유성구 (전주비전학교 전기공학과) ;
  • 임진택 (전주비전학교 전기공학과)
  • Received : 2024.01.02
  • Accepted : 2024.01.31
  • Published : 2024.03.31

Abstract

The need for an environmental monitoring system that obtains and provides environmental information in real time is increasing. In particular, in the case of water quality management in public waters, regular management must be conducted through manual and automatic measurement by law, and air pollution also requires regular measurement and management to reduce fine dust and exhaust gas in connection with the realization of carbon neutrality. In this study, we implemented a system that can measure and monitor water pollution and air pollution information in real time. A hovercraft capable of moving on land and water simultaneously was used as a measurement tool. Water quality measurement and air pollution measurement sensors were installed on the hovercraft body, and a communication module was installed to transmit the information to the monitoring system in real time. The structure of a hovercraft for environmental measurement was designed, and a LoRa module capable of low-power, long-distance communication was applied as a real-time information transmission communication module. The operational performance of the proposed system was confirmed through actual hardware implementation.

환경정보를 실시간으로 획득하여 정보를 제공하는 환경 모니터링 시스템 필요성이 확대되고 있다. 특히 공공수역 수질관리의 경우 법적으로 수동측정과 자동측정을 통해 상시 관리를 진행해야 하며, 대기오염도 탄소중립 실현과 연관하여 미세먼지, 배기가스 저감을 위한 상시 측정 및 관리가 필요한 실정이다. 본 연구에서는 수질오염 및 대기오염 정보를 실시간으로 측정하여 모니터링을 할 수 있는 시스템을 구현하였다. 측정을 위한 도구로 육상과 수상을 동시에 이동 가능한 호버크래프트를 활용하였다. 호버크래프트 본체에 수질측정 및 대기오염측정 센서를 장착하고 그 정보를 실시간으로 모니터링 시스템으로 전송할 수 있는 통신 모듈을 장착하였다. 환경측정용 호버크래프트의 구조를 설계하였으며, 실시간 정보전달 통신 모듈로는 저전력 장거리 통신이 가능한 LoRa 모듈을 적용하였다. 실제 하드웨어 구현을 통해 제안한 시스템의 동작 성능을 확인하였다.

Keywords

Acknowledgement

이 연구는 첨단분야 혁신융합대학사업 에코업(주관:고려대학교(세종), 참여:전주비전대학교) 연구개발과제 지원에 의한 연구임

References

  1. Ullo, Silvia Liberata, and Ganesh Ram Sinha. "Advances in smart environment monitoring systems using IoT and sensors." Sensors, Vol.20, No. 11, pp 3113, 2020
  2. Jiang, Peng, et al. "Design of a water environment monitoring system based on wireless sensor networks." Sensors, Vol. 9, No.8, pp 6411-6434, 2009 https://doi.org/10.3390/s90806411
  3. Weon, Dalsoo "Service Platform Design for Smart Environment Disaster Management." The Journal of the Convergence on Culture Technology(JCCT), Vol. 4, No. 3, pp 247-252, 2018
  4. Kap Rai Lee, Young Sik Kim. "A Study on the Development for Environment Monitoring System of Micro Data Center." The Journal of the Convergence on Culture Technology(JCCT), Vol. 8, No. 2, pp. 355-360. 2022.
  5. Sajid, Memoon, et al. "Remote monitoring of environment using multi-sensor wireless node installed on quad-copter drone." 2016 IEEE International Symposium on Robotics and Intelligent Sensors (IRIS). IEEE, 2016.
  6. Potter, Brooke, et al. "Environmental monitoring using a drone-enabled wireless sensor network." 2019 Systems and Information Engineering Design Symposium (SIEDS). IEEE, 2019.
  7. Kim, Jeong Su. "Data Error Compensation Estimation Technology for Providing High Quality Contents in IoT Environment." The Journal of the Convergence on Culture Technology(JCCT), Vol. 5, No. 3, pp 333-338, 2019
  8. Wan-Jik Lee, Se-Jin Kim, Jun-Keun Yoon, Ja-Woon Jeong, Seok-Yeol Heo. "Design and Development of IoT-based Indoor Environment Management Platform ." The Journal of the Convergence on Culture Technology (JCCT), Vol. 7, No.1, pp 654-661, 2021.
  9. R. Ortega, M. W. Spong, F. Gomez-Estern, and G. Blankenstein, "Stabilization of a class of underactuated mechanical systems via interconnection and damping assignment," IEEE Transactions on Automatic Control, vol. 47, no. 8, pp. 1218-1233, Aug. 2002. https://doi.org/10.1109/TAC.2002.800770
  10. D. Chwa, "Global tracking control of underactuated ships with input and velocity constraints using dynamic surface control method," IEEE Transactions on Control Systems Technology, vol. 19, no. 6, pp. 1357-1370, Nov. 2011. https://doi.org/10.1109/TCST.2010.2090526
  11. D. Chwa, "Fuzzy adaptive output feedback tracking control of VTOL aircraft with uncertain input coupling and state-dependent disturbances," IEEE Transactions on Fuzzy Systems, vol. 23, no. 5, pp. 1505-1518, Oct. 2015. https://doi.org/10.1109/TFUZZ.2014.2362554
  12. X. Huang and Y. Yan, "Output feedback control of underactuated spacecraft hovering in circular orbit with radial or in-track controller failure," IEEE Transactions on Industrial Electronics, vol. 63, no. 9, pp. 5569-5581, Sep. 2016. https://doi.org/10.1109/TIE.2016.2564341
  13. W. Khalil, "Dynamic modeling of robots using Newton-Euler formulation", Informatics in Control, Automation and Robotics, Springer, Berlin, 2011.
  14. Alliance, L. "LoRaWAN What is it?-A Technical Overview of LoRa and LoRaWAN LoRa Alliance.", 2015.
  15. Murata Innovator in Electronics, 2018, https://www.murata.com/en-us/products/connectivitymodule/lora