• Title/Summary/Keyword: monitor unit

Search Result 342, Processing Time 0.024 seconds

Comparison of Monitor Units Obtained from Measurements and ADAC Planning System for High Energy Electrons (측정과 ADAC 치료계획 시스템에서 계산된 고에너지 전자선의 Monitor Unit Value 비교)

  • Lee, Re-Na;Choi, Jin-Ho;Suh, Hyun-Suk
    • Progress in Medical Physics
    • /
    • v.13 no.4
    • /
    • pp.202-208
    • /
    • 2002
  • The purpose of this study is to evaluate the monitor unit obtained from various methods for the treatment of superficial cancers using electron beams. Thirty-three breast cancer patients who were treated in our institution with 6, 9, and 12 MeV electron beams, were selected for this study. For each patient, irregularly shaped treatment blocks were drawn on simulation film and constructed. Using the irregular blocks, monitor units to deliver 100 cGy to the dose maximum (dmax) were calculated from measurement and three-dimensional radiation treatment planning (3D RTP) system (PINNACLE 6.0, ADAC Laboratories, Milpitas CA) Measurements were made in solid water phantom with plane parallel (PP) chamber (Roos, OTW Germany) at 100 cm source-to surface distances. CT data was used to investigate the effect of heterogeneity. Monitor units were calculated by overriding CT values with 1 g/㎤ and in the presence of heterogeneity. The monitor unit values obtained by the above methods were compared. The dose, obtained from measurement in solid water phantom was higher than that of RTP values for irregularly shaped blocks. The maximum differences between monitor unit calculated in flat water phantom at gantry zero position were 4% for 6 MeV and 2% for 9 and 12 MeV electrons. When CT data was used at a various gantry angle the agreement between the TPS data with and without density correction was within 3% for all energies. These results indicate that there are no significant difference in terms of monitor unit when density is corrected for the treatment of breast cancer patients with electrons.

  • PDF

Monitor Unit calculation through Excell program (Excell 프로그램을 통한 치료선량(M. U) 계산)

  • Lim, Guang-Chae;Cho, Eun-Ju;Cho, Sun-Hang
    • The Journal of Korean Society for Radiation Therapy
    • /
    • v.11 no.1
    • /
    • pp.28-32
    • /
    • 1999
  • Verifying the treatment value(Monitor Unit) unnecessarily involves too many simple and repetitive calculation processes, that is, individual computation process using the data(PDD value, Scp Factor, SSD Factor, Tray Factor) on the data book. We intend to minimize the time required to check the Monitor Unit through computerized calculation. Using $^{\ast}(multiplication)$, /(division), +(sum), if function, among others, which are present in the Excell program, MS office program, the Monitor Unit was obtainable through A/P value, Scp Factor and PDD value, Wedge Factor. From the verification of the computations of Monitor Unit for 60 patients previously treated, we were able to obtain an error rate of ${\pm}0.028MU$. Computerized calculation of the Monitor Unit could save the burden of Technologist.

  • PDF

Design of Total RMS(Radiation Monitoring System) for nuclear and nuclear medicine (원자력 및 핵의학 분야용 Total RMS (Radiation Monitoring System)의 설계)

  • Ko, Tae-Young;Lee, Joo-Hyun;Lee, Seung-Ho
    • Journal of IKEEE
    • /
    • v.21 no.2
    • /
    • pp.158-161
    • /
    • 2017
  • In this paper, we propose Total RMS(Radiation Monitoring System) for nuclear and nuclear medicine. The proposed system can expand and control Stack Monitor, Area Monitor, and Water(Liquid) Monitor into one system, and can monitor the signals measured by each radiation detector in an integrated manner. The proposed system consists of a sensor module that detects the radiation, a display unit that displays the radiation dose near the radiation detection location, an alarm unit that reports the alarm when the detected radiation dose reaches the danger level, A Main Hub for collecting and storing the contents to the remote monitoring system, and an RMS Monitoring Unit for clearly displaying the measured radiation dose at the remote site. In order to evaluate the performance of Total RMS for the proposed nuclear and nuclear medicine field, it is confirmed that the measurement uncertainty is less than 8.5% and it operates normally within ${\pm}15%$ of the international standard.

Optical Ozone Monitor Using UV Source

  • Chung, Wan-Young
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2003.10a
    • /
    • pp.49-52
    • /
    • 2003
  • Two types of ozone monitors using UV absorption method were tried in consideration of cost of the monitor and precision in measuring. The high concentration ozone monitor for high concentration real time ozone monitoring from ozone generator was composed of a low pressure mercury lamp as UV source, a photo multiplier tube as UV detector and signal processing unit for the most part. This structure could be very useful for low price high concentration ozone monitor due to simple system structure and fairly good monitoring characteristics. The developed system showed good linear output characteristics to ozone in the measuring concentration range of 0.05 and 2 wt.%. For accuracy ambient ozone monitoring in ambient in ppm level, the system composed of a high power pulsed xenon lamp as UV source, an optical spectrometer with a high sensitivity linear CCD array as UV detector and signal processing unit in brief speaking was proposed our study for the first time in the world. The developed system showed good linearity and sensitivity in relative low measuring range between 10ppm and 10,000ppm, and showed some feasibility of high resolution ozone monitor using CCD array as photodetector.

  • PDF

Development of a Module-Based Bedside Monitor for Patient Monitoring (모듈형 환자 모니터의 개발)

  • 우응제;박승훈
    • Journal of Biomedical Engineering Research
    • /
    • v.18 no.2
    • /
    • pp.133-146
    • /
    • 1997
  • In this paper, we describe the design methodology and specifications of the developed module-based bedside monitors for patient monitoring. The bedside monitor consists of a main unit and module cases with various parameter modules. The main unit includes a 12.1" TFT color LCD, a main CPU board, and peripherals such as a module controller, Ethernet LAN card, video card, rotate/push button controller, etc. The main unit can connect at maximum three module cases, each of which can accommodate up to 7 parameter modules. They include the modules for electrocardiograph, respiration, invasive blood pressure, noninvasive blood pressure, temperature, and SpO with plethysmograph.raph.

  • PDF

Remote Reading of Surgical Monitor's Physiological Readings: An Image Processing Approach

  • Weerathunga, Haritha;Vidanage, Kaneeka
    • International Journal of Computer Science & Network Security
    • /
    • v.22 no.7
    • /
    • pp.308-314
    • /
    • 2022
  • As a result of the global effect of infectious diseases like COVID-19, remote patient monitoring has become a vital need. Surgical ICU monitors are attached around the clock for patients in critical care. Most ICU monitor systems, on the other hand, lack an output port for transferring data to an auxiliary device for post-processing. Similarly, strapping a slew of wearables to a patient for remote monitoring creates a great deal of discomfort and limits the patient's mobility. Hence, an unique remote monitoring technique for the ICU monitor's physiologically vital readings has been presented, recognizing this need as a research gap. This mechanism has been put to the test in a variety of modes, yielding an overall accuracy of close to 90%.

A FSK Radio-telemetry System for Monitoring Vital Signs in UHF Band (UHF 대역 FSK에 의한 생체신호 무선 전송장치의 개발)

  • Park D.C.;Lee H.K.
    • Journal of Biomedical Engineering Research
    • /
    • v.21 no.3 s.61
    • /
    • pp.255-260
    • /
    • 2000
  • This paper presents a radio-telemetry patient monitor. which is used for intensive cal?e units. emergency and surgical operation rooms to monitor continuously patients' vital signs. The radio-telemetry patient monitor consists of a vital sign acquisition unit. wireless data transmission units and a vital sign-monitoring unit. The vital sign acquisition unit amplifies biological signals, performs analog signal to serial digital data conversion using the one chip micro-controller. The converted digital data is modulated FSK in UHF band using low output power and transmitted to a remote site in door. In comparison with analog modulation. FSK has major advantages to improve performance with respect to noise resistance with fower error and the potential ability to process and Improve quality of the received data. The vital sign-monitoring unit consists of the receiver to demodulate the modulated digital data, the LCD monitor to display vital signs continuously and the thermal head printer to record a signal.

  • PDF

Thin ECG Monitor Design using the TFT LCD (TFT LCD를 사용한 박막형 ECG Monitor 설계)

  • Lee, G.K.;Kang, C.H.;Jo, W.R.;Lee, S.M.;Jang, D.B.;Kim, N.H.
    • Proceedings of the KOSOMBE Conference
    • /
    • v.1997 no.05
    • /
    • pp.326-329
    • /
    • 1997
  • This paper describes a new ECG monitor that has a TFT LCD panel as its display unit. The monitor is thinner, smaller and lighter than most commonly used CRT-based monitors. In addition to portability, the system can be expanded to measure blood pressure and oxygen saturation through its flexible design.

  • PDF

Optical Fiber Atmospheric Ozone Monitor (광섬유 대기오존 모니터)

  • 정완영
    • Proceedings of the IEEK Conference
    • /
    • 2002.06e
    • /
    • pp.201-204
    • /
    • 2002
  • A high accuracy ozone monitor using UV absorption method was developed for ambient ozone monitoring. The system was mainly composed of a high power pulsed xenon lamp as UV source, an optical spectrometer with a high sensitivity linear CCD array as UV detector and signal processing unit. The optical signal from the CCD array that provides unusually high response and excellent optical resolution for ozone concentration was converted to digital signal and the digital signal was displayed on screen using PC interface. The optical signal was propagated using optic fiber to reduce optical loss to increase the accuracy of the measuring system. This paper has been studied a interworking signalling protocol between two hybrid networks by analyzing Satellite B-ISDN architecture, DSS2 Layer 3 Signalling protocol, B-ISUP protocol, S-BISUP protocol stack and so on. Also in the paper, messages and primitives have been defined for B-ISDN's Connection Type, Ownership and each protocol in order to connect point-to-multipoint. The ozone sensing properties of the CCD ozone monitor was compared with those of the photo multiplier ozone monitor.

  • PDF

Development of a Moving Monitor System for Growing Crops and Environmental Information in Green House (시설하우스 이동형 환경 및 생장 모니터링 시스템 개발)

  • Kim, Ho-Joon
    • The Journal of Korea Institute of Information, Electronics, and Communication Technology
    • /
    • v.9 no.3
    • /
    • pp.285-290
    • /
    • 2016
  • In rural area, our farmers confront decreasing benefits owing to imported crops and increased cost. Recently, the government encourage the 6th Industry that merges farming, rural resources, and information and communication technology. Therefor the government makes an investment in supplying 'smart greenhouse' in which a farmer monitor growing crops and environment information to control growing condition. The objective of this study is developing an Moving Monitor and Control System for crops in green House. This system includes a movable sensing unit, a controlling unit, and a server PC unit. The movable sensing unit contains high resolution IP camera, temperature and humidity sensor and WiFi repeater. It rolls on a rail hanging beneath the ceiling of a green house. The controlling unit contains embedded PC, PLC module, WiFi router, and BLDC motor to drive the movable sensing unit. And the server PC unit contains a integrated farm management software and home pages and databases in which the images of crops and environment informations. The movable sensing unit moves widely in a green house and gathers lots of information. The server saves these informations and provides them to customers with the direct commercing web page. This system will help farmers to control house environment and sales their crops in online market. Eventually It will be helpful for farmers to increase their benefits.