• Title/Summary/Keyword: moment-curvature behavior

Search Result 115, Processing Time 0.024 seconds

Nonlinear Analysis of RC Beams under Cyclic Loading Based on Moment-Curvature Relationship (모멘트-곡률 관계에 기초한 반복하중을 받는 철근콘크리트 보의 비선형 해석)

  • 곽효경;김선필
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.13 no.2
    • /
    • pp.245-256
    • /
    • 2000
  • A moment-curvature relationship to simulate the behavior of reinforced concrete beam under cyclic loading is introduced. Unlike previous moment-curvature models and the layered section approach, the proposed model takes into consideration the bond-slip effect by using monotonic moment-curvature relationship constructed on the basis of the bond-slip relation and corresponding equilibrium equation at each nodal point. In addition, the use of curved unloading and reloading branches inferred from the stress-strain relation of steel gives more exact numerical result. The advantages of the proposed model, comparing to layered section approach, may be on the reduction in calculation time and memory space in case of its application to large structures. The modification of the moment-curvature relation to reflect the fixed-end rotation and pinching effect is also introduced. Finally, correlation studies between analytical results and experimental studies are conducted to establish the validity of the proposed model.

  • PDF

Numerical and experimental study on flexural behavior of reinforced concrete beams: Digital image correlation approach

  • Krishna, B. Murali;Reddy, V. Guru Prathap;Tadepalli, T.;Kumar, P. Rathish;Lahir, Yerra
    • Computers and Concrete
    • /
    • v.24 no.6
    • /
    • pp.561-570
    • /
    • 2019
  • Understanding the realistic behavior of concrete up to failure under different loading conditions within the framework of damage mechanics and plasticity would lead to an enhanced design of concrete structures. In the present investigation, QR (Quick Response) code based random speckle pattern is used as a non-contact sensor, which is an innovative approach in the field of digital image correlation (DIC). A four-point bending test was performed on RC beams of size 1800 mm × 150 mm × 200 mm. Image processing was done using an open source Ncorr algorithm for the results obtained using random speckle pattern and QR code based random speckle pattern. Load-deflection curves of RC beams were plotted for the results obtained using both contact and non-contact (DIC) sensors, and further, Moment (M)-Curvature (κ) relationship of RC beams was developed. The loading curves obtained were used as input data for material model parameters in finite element analysis. In finite element method (FEM) based software, concrete damage plasticity (CDP) constitutive model is used to predict the realistic nonlinear quasi-static flexural behavior of RC beams for monotonic loading condition. The results obtained using QR code based DIC are observed to be on par with conventional results and FEM results.

The Structural Behavior of Cold-Formed Steel Composite Beams (냉간성형강재를 이용한 합성보의 구조적인 거동)

  • 양구록;송준엽;권영봉
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 1999.10a
    • /
    • pp.206-213
    • /
    • 1999
  • The behavior of composite beams, which are composed of cold-formed steel sheeting and normal strength concrete, have been studied. An analytical method has been developed to trace the nonlinear behavior of composite beams. The nonlinear material properties of steel sheeting, reinforcing steel bar and concrete have been included in the analysis. The nonlinear moment-curvature relation of the composite beam has been described using a cross section analysis method and a simple power model, separately. The load-deflection behavior of the beams has been simulated by step-by-step numerical integration method and is compared with test results.

  • PDF

An Experimental Study on the Buckling Strength of subject to Asymmetrical Double Curvature Stainless Steel Circular Hollow Section Beam-Columns (비대칭 이중곡률 스테인리스 원형강관 보-기둥의 좌굴내력에 관한 실험적 연구)

  • Jang, Ho Ju;Park, Jae Seon;Yang, Young Sung
    • Journal of Korean Society of Steel Construction
    • /
    • v.21 no.4
    • /
    • pp.351-360
    • /
    • 2009
  • This study is a series of experimental investigations of the buckling strengths of eccentrically compressed, cold-formed, stainless-steel, circular, hollow-section beam columns. The principal parameters that were used in this study were the slenderness ratios (Lk/r = 30, 50, 70) and the magnitude of eccentricity e(one way: 0, 25, 50, 75, and 100mm: the other way: 0, 12.5, 25, 37.5, and 50mm) on the asymmetrical end-moment of a double curvature. The objectives of the study were to obtain the maximum loads through an experiment and to compare the experimental behaviors with the analysis results. The ultimate buckling strength of the square section members were evaluated using a numerical method, in accordance with the bending moment-axial force(M-P) interaction curves. The behavior of each specimen was displayed in the form of the strength-displacement and moment-angle(M-$\theta$) relationship.

Moment-Curvature Relationship of Structural Wells with Confined Boundary Element (단부 횡보강된 구조벽의 모멘트-곡률 관계)

  • Kang, Su-Min;Park, Hong-Gun
    • Journal of the Korea Concrete Institute
    • /
    • v.15 no.2
    • /
    • pp.323-334
    • /
    • 2003
  • For performance-based design using nonlinear static analysis, it is required to predict the inelastic behavior of structural members accurately. In the present study, a nonlinear numerical analysis was peformed to develop the method describing the moment-curvature relationship of structural wall with boundary confinement. Through the numerical analysis, variations of behavioral characteristics and failure mechanism with the arrangement of vertical reinforcement and the length of boundary confinement were studied. According to the analysis, the maximum moment-carrying capacity of structural walls with adequately confined boundary elements is developed at the moment the unconfined concrete reaches the ultimate compressive strain. Walls with flexural re-bars concentrated on the boundaries fails in a brittle manner. As vortical re-bars in the web increases, the brittle failure is prevented and a ductile failure occurs. Based on the findings, moment-curvature curves for walls with a variety of re-bar arrangement were developed. According to the proposed relationships, deformability of the structural walls wth boundary confinement increases as the compressive strength of the confined concrete increases compared to the applied compressive force.

Behavior of Punch Deformation in Precision Shearing Process Using Press Die (금형을 이용한 정밀전단가공에서 펀치의 변형거동)

  • Jeong, Jun-Gi
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.17 no.9
    • /
    • pp.62-69
    • /
    • 2000
  • Uneven clearances in the left and right sides of a press die cause deformation of the punch in precision shearing process. This deformation results from the compression stress and bending moment from shearing force in vertical direction and from the side force in horizontal direction acting to the punch, In this study the behavior of punch deformation is investigated in order to clarify the deformation state of the punch by using strain gauge deformation to shearing force side force bending moment radius of curvature and shear plane of the punch. Also we presented the calculation method of deformation size for the punch.

  • PDF

Deterioration of Structural Capacity of Fire-Damaged Reinforced Concrete Column (화해를 입은 철근콘크리트 기둥의 구조성능 저하)

  • 이차돈;신영수;홍성걸;이승환
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2003.11a
    • /
    • pp.371-374
    • /
    • 2003
  • The degree of changes in mechanical properties of fire-damaged reinforced concrete column depends mostly on sectional geometry, duration exposed to fire, and moisture containment. In order to reasonably assess the deterioration of structural capacity of fire-damaged reinforced concrete column, it is necessary to develop a theoretical model predicting column behavior based on nonlinear heat transfer equation in addition to the traditional mechanics. This research focuses on the development of theoretical model to predict moment-curvature relations of fire-damaged reinforced column. The model is used for the assessment of structural capacity of fire-damaged column in terms of moment-curvature relations and PM interaction curves.

  • PDF

Hysteretic Behavior of Retrofitted RC Bridge Piers with Lap Spliced Longitudinal Steels (주철근 겹침이음 및 보강된 RC교각의 이력거동)

  • 이대형;정영수;박창규;박진영;송희원
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2003.05a
    • /
    • pp.121-126
    • /
    • 2003
  • The objective of this research is to evaluate of seismic performance for reinforced concrete bridge piers with lap splices of longitudinal reinforcement steels using predicting of nonlinear hysteric behavior. For the purpose, enhanced analytical trilinear hystretic model has been proposed to simulate the force-displacement hysteretic curve of RC bridge piers under repeated reversal loads. The moment capacity and corresponding curvature in the plastic hinge have been determined, and the enhanced hysteretic behavior model by five different kinds of branches has been proposed for modeling the stiffness variation of RC section under cyclic loading. The strength and stiffness degradation index are introduced to compute the hysteretic curve for various confinement steel ratios, In addition, the modified curvature factor has been introduced to forecast of seismic performance of longitudinal steel lap spliced and retrofitted specimens. The results of this research will be useful to predict of seismic performance for longitudinal steel with lap spliced and its retrofitted specimens.

  • PDF

Software for biaxial cyclic analysis of reinforced concrete columns

  • Shirmohammadi, Fatemeh;Esmaeily, Asad
    • Computers and Concrete
    • /
    • v.17 no.3
    • /
    • pp.353-386
    • /
    • 2016
  • Realistic assessment of the performance of reinforced concrete structural members like columns is needed for designing new structures or maintenance of the existing structural members. This assessment requires analytical capability of employing proper material models and cyclic rules and considering various load and displacement patterns. A computer application was developed to analyze the non-linear, cyclic flexural performance of reinforced concrete structural members under various types of loading paths including non-sequential variations in axial load and bi-axial cyclic load or displacement. Different monotonic material models as well as hysteresis rules, were implemented in a fiber-based moment-curvature and in turn force-deflection analysis, using proper assumptions on curvature distribution along the member, as in plastic-hinge models. Performance of the program was verified against analytical results by others, and accuracy of the analytical process and the implemented models were evaluated in comparison to the experimental results. The computer application can be used to predict the response of a member with an arbitrary cross section and various type of lateral and longitudinal reinforcement under different combinations of loading patterns in axial and bi-axial directions. On the other hand, the application can be used to examine analytical models and methods using proper experimental data.

Nonlinear Moment-Curvature Relations and Numerical Structural Analysis of High-Strength PSC Flexural Members (고강도 PSC 휨부재의 비선형 모멘트-곡률 관계와 전산구조해석)

  • 연정흠;이제일
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.15 no.1
    • /
    • pp.95-104
    • /
    • 2002
  • A methods to calculate non-linear moment-curvature relations of high-strength PSC flexural members for numerical analysis has been proposed. The moment-curvature relations were calculated with assumptions of design codes and by the layer method. The results of the proposed procedures for moment-curvature relations and numerical analysis were compared with those of pre-existing tests. The absorption energy rate of the design codes was about 30% larger than that of the layer method. The ultimate load and the external work of the layer method were 90% and 85% of those of tests, respectively The ultimate load of the strength design method was 97% of that of tests, but the external work was over-estimated with 122%. The ultimate load and external work by the proposed equation of the CEB-FIP Model Code were 113% and 173% of those of tests, respectively. It show that the use of ultimate strain of 0.0035 should be over-estimated for high-strength concrete. The procedure of non-linear numerical analysis of this research could be stably simulated the behavior of concrete flexural members until the ultimate state, and calculate results of the load-deflection relation and cracking pattern were very similar with those of tests.