DOI QR코드

DOI QR Code

Moment-Curvature Relationship of Structural Wells with Confined Boundary Element

단부 횡보강된 구조벽의 모멘트-곡률 관계

  • Published : 2003.04.01

Abstract

For performance-based design using nonlinear static analysis, it is required to predict the inelastic behavior of structural members accurately. In the present study, a nonlinear numerical analysis was peformed to develop the method describing the moment-curvature relationship of structural wall with boundary confinement. Through the numerical analysis, variations of behavioral characteristics and failure mechanism with the arrangement of vertical reinforcement and the length of boundary confinement were studied. According to the analysis, the maximum moment-carrying capacity of structural walls with adequately confined boundary elements is developed at the moment the unconfined concrete reaches the ultimate compressive strain. Walls with flexural re-bars concentrated on the boundaries fails in a brittle manner. As vortical re-bars in the web increases, the brittle failure is prevented and a ductile failure occurs. Based on the findings, moment-curvature curves for walls with a variety of re-bar arrangement were developed. According to the proposed relationships, deformability of the structural walls wth boundary confinement increases as the compressive strength of the confined concrete increases compared to the applied compressive force.

비선형정적해석과 같은 성능기초설계를 위해서는 부재의 비선형거동을 정확하게 예측하여야 한다. 본 연구에서는 단부횡보강된 구조벽의 휨모멘트-곡률관계를 구하는 방법을 개발하기 위하여 해석연구를 실시하였다. 비선형해석을 수행하여 수직방향 철근의 배치형태와 단부횡보강 길이의 변화에 따른 구조벽체의 거동특성과 파괴 메카니즘의 변화를 연구하였다. 분석결과, 적절하게 횡보강된 벽체의 최대강도는 비횡보강 콘크리트가 극한 압축변형율에 도달하는 경우에 발생한다. 단부집중배근을 갖는 벽체에서는 취성파괴가 일어나며, 웨브의 수직철근은 연성파괴를 유도하는 역할을 한다. 이러한 연구결과에 근거하여 다양한 배근형태를 갖는 벽체에 대한 모멘트-곡률관계를 정의하였다. 이 제안된 관계에 따르면 단부횡보강된 구조벽체의 변형능력은 재하된 압축력에 비하여 횡보강 콘크리트의 압축재하능력이 증가할수록 증가한다.

Keywords

References

  1. Building Seismic Safety Council, NEHRP Recommended Previsions For Seismic Regulations For New Building And Other Structures, 1997
  2. Wallace, J. W., 'Seismic Design of RC Structural Walls. Part I: New Code Format', J. Struct. Engrg,ASCE, 121(1), 1995
  3. Building Seismic Safety Council, NEHRP Guidelines for the Seismic Rehabilitation of Buildings(FEMA273), 1997
  4. Paulay, T. and Pnestley, M J. N., 'Seismic Design of Reinforced Concrete and Masonry Buitdings,' Wiley Intel-science, 1992
  5. International Conference of BuiIding Officials, Uniform Building Code(UBC), 1997
  6. Amerioan Concrete Institute, Building Code Requirements for Structurat Concrete (ACI 318-95), Special Provision for Seismic Design 21.6, 1995
  7. Amerioan Concrete Institute, Building Code Re-quirements for Structural Concrete (ACI 318-99), Special Provision for Seismic Design 21.6, 1999
  8. 강수민, 박홍근, '장방형 철근 콘크리트 전단벽의 연성보강', 콘크리트학회논문집, vol.14, no. 4, 2002, pp.530-539
  9. Mander, J. B., Priestley, M J. N., and Park, R, 'Theoretical Stress-Strain Model For ConSned Concrete,' J. Struct. Engrg., ASCE, 114(8), 1988, pp.1804-1826 https://doi.org/10.1061/(ASCE)0733-9445(1988)114:8(1804)
  10. Mander, J. B, Priestley, M J. N., and Park, R, 'Observed Stress-Strain Behavior of Confined Concrete,' J. Struct. Engrg., ASCE, 114(8), 1988, pp.1827-1847 https://doi.org/10.1061/(ASCE)0733-9445(1988)114:8(1827)
  11. Charles, Chadwell, Ucfyber-Cross Section Analysis Software, University of Califomia, Berkeley, 1999
  12. Chang, G. A and Mander, J. B., Seismic Energy Base Fatigue Damage Analysis of Bridge Columns, Part I : Evaluation of Seismic Capadty , Technical Report NCEER-94-006, Buffalo, Nework, 1994
  13. Thomsen IV, J. H and Wallace, J. W., 'Displacement Based Design of RC Structural Wall : An Expenmental Investigation of Walls With Rec- tangular And T-Shaped Cross Sectons,' Technical Report NSF-BCS-9112962, Clarkson University, 1995

Cited by

  1. Generalized Lateral Load-Displacement Relationship of Reinforced Concrete Shear Walls vol.26, pp.2, 2014, https://doi.org/10.4334/JKCI.2014.26.2.159
  2. Displacement ductility ratio-based flexural design approach of reinforced concrete slender shear walls vol.68, pp.8, 2016, https://doi.org/10.1680/jmacr.15.00113