• Title/Summary/Keyword: moment ratio

Search Result 949, Processing Time 0.031 seconds

Seismic fragility analysis of conventional and viscoelastically damped moment resisting frames

  • Guneyisi, Esra Mete;Sahin, Nazli Deniz
    • Earthquakes and Structures
    • /
    • v.7 no.3
    • /
    • pp.295-315
    • /
    • 2014
  • This paper presents the results of an analytical study on seismic reliability of viscoelastically damped frame systems in comparison with that of conventional moment resisting frame systems. In order to exhibit the reliability of the frame systems with viscoelastic dampers, seismic reliability analyses were carried out for steel framed buildings, 5 and 12 storeys in height, designed as: (a) Case 1: Conventional moment resisting frame, (b) Case 2: Frame with viscoelastic dampers providing supplemental effective damping ratio of 10%, and (c) Case 3: Frame with viscoelastic dampers providing supplemental effective damping ratio of 20%. Nonlinear time history analyses were utilized to develop seismic fragility curves whilst monitoring various performance objectives. To obtain robust estimators of the seismic reliability, a database including 15 natural earthquake ground motion records with markedly different characteristics was employed in the fragility analysis. The results indicate that depending upon the supplemental effective damping ratio, frames designed with viscoelastic dampers have considerably lower annual probability of exceedance of performance limit states for structural components, showing up to a five-fold reduction in comparison to conventionally designed moment resisting frame system.

Investigation on the Effective Moment of Inertia of Reinforced Concrete Flexural Members Under Service Load (사용하중 상태에서 철근콘크리트 휨부재의 유효 단면2차모멘트에 대한 고찰)

  • Lee, Seung-Bea;Park, Mi-Young;Jang, Su-Youn;Kim, Kang-Su;Kim, Sang-Sik
    • Journal of the Korea Concrete Institute
    • /
    • v.20 no.3
    • /
    • pp.393-404
    • /
    • 2008
  • The approaches in many design codes for the estimation of the deflection of flexural reinforced concrete (RC) members utilize the concept of the effective moment of inertia which considers the reduction of flexural rigidity of RC beams after cracking. However, the effective moment of inertia in design codes are primarily based on the ratio of maximum moment and cracking moment of beam subjected to loading without proper consideration on many other possible influencing factors such as span length, member end condition, sectional size, loading geometry, materials, sectional properties, amount of cracks and its distribution, and etc. In this study, therefore, an experimental investigation was conducted to provide fundamental test data on the effective moment of inertia of RC beams for the evaluation of flexural deflection, and to develop a modified method on the estimation of the effective moment of inertia based on test results. 14 specimens were fabricated with the primary test parameters of concrete strength, cover thickness, reinforcement ratio, and bar diameters, and the effective moments of inertia obtained from the test results were compared with those by design codes, existing equations, and the modified equation proposed in this study. The proposed method considered the effect of the length of cracking region, reinforcement ratio, and the effective concrete area per bar on the effective moment of inertia, which estimated the effective moment of inertia more close to the test results compared to other approaches.

Effects of damping ratio on dynamic increase factor in progressive collapse

  • Mashhadi, Javad;Saffari, Hamed
    • Steel and Composite Structures
    • /
    • v.22 no.3
    • /
    • pp.677-690
    • /
    • 2016
  • In this paper, the effect of damping ratio on nonlinear dynamic analysis response and dynamic increase factor (DIF) in nonlinear static analysis of structures against column removal are investigated and a modified empirical DIF is presented. To this end, series of low and mid-rise moment frame structures with different span lengths and number of storeys are designed and the effect of damping ratio in DIF is investigated, performing several nonlinear static and dynamic analyses. For each damping ratio, a nonlinear dynamic analysis and a step by step nonlinear static analysis are carried out and the modified empirical DIF formulas are derived. The results of the analysis reveal that DIF is decreased with increasing damping ratio. Finally, an empirical formula is recommended that relates to damping ratio. Therefore, the new modified DIF can be used with nonlinear static analysis instead of nonlinear dynamic analysis to assess the progressive collapse potential of moment frame buildings with different damping ratios.

SCS Curve Number and temporal Variation of Rainfall (강우의 시간분포를 고려한 CN값 산정)

  • Cho, Hong-Je;Lee, Tae-Young
    • Journal of Korea Water Resources Association
    • /
    • v.36 no.2
    • /
    • pp.183-193
    • /
    • 2003
  • A relation between the temporal variation of rainfall and direct runoff was characterized using temporal indexes of rainfall(1st, 2nd, 3rd, and 4th moment). Curve Number has a relation with 1st and 2nd moment for AMCIII condition when the rainfall duration is relative (10th quantile). Also peak runoff ratio(QP/Q) has a relation with 1st and End moment for AMCIII condition as well as 3rd and 4th moment for AMC I condition. Considering all durations of rainfall, alternatively, Curve Number has a relation with 1st and 2nd moment for AMCIIIcondition besides every moments for AMC I condition. But peak runoff ratio(QP/Q) has few relations excepting 3rd and 4th moment for AMC I condition. As a results, temporal indexes of rainfall are useful to determine curve numbers regarding the temporal variation of rainfall.

Evaluation of Moment Resisting Post-Base Connection Using Multi-directional Connector (다방향 접합철물 삽입형 기둥-기초 접합부 모멘트 저항성능평가)

  • Kim, Keon-Ho;Lee, Sang-Joon
    • Journal of the Korea Furniture Society
    • /
    • v.25 no.4
    • /
    • pp.331-337
    • /
    • 2014
  • The purpose of this paper is to evaluate the moment resistance of glulam post-to-base connections by applying quasi-static cyclic loads. The connectors consisted of inserted plates and drifted pins according to the load direction. The connection types employed in this study were total three including two unidirectional types (H, V) and the multi-directional type (M). The moment resistance of 8 mm-plate M-type is compared to 6 mm plate. Total four types of Post-to-base connection are prepared and tested under pseudo-static reversed cyclic loading. Test results showed that the yield moment of multi-directional connection is about 2 times higher than that uni-directional connections. The ductility ratio of multi-directional connection determined by EEEP was higher that that of uni-directional connection. It was becoming higher as the thickness of plate is increased. The Finite Element Analysis was conducted to estimate the stress distribution behavior of tested connections. Results showed the failure of multi-directional type were caused by the split of pined hole and the shear failure of lifted part of post.

  • PDF

Effect of Longitudinal Reinforcement Ratios and Axial Deformation on Frame Analysis in RC Columns (기둥의 철근비와 축변형량이 보 해석에 미치는 영향 연구)

  • 장원석;민창식
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2001.11a
    • /
    • pp.477-482
    • /
    • 2001
  • This paper is to study the effect of longitudinal reinforcement ratios and axial deformation on the frame analysis in reinforced concrete(RC) columns and to investigate the effect of confined concrete core, the length-width ratio and longitudinal steel ratios on frame analysis in Concrete-Filled steel Tubular(CFT) columns. An equation if derived to evaluate the modulus of elasticity for core concrete. The 34 reference data have been collected for the purpose and are processed by the mean of a multiple regression analysis technique. The equation and longitudinal reinforcement ratios was applied to RC columns for structural analysis. Then, the difference of beam moment was identified. In general, the results of analysis was indicated reasonable differences in beam moment, in case of longitudinal reinforcement ratios applied to RC columns when compared with the plain concrete columns. In CFT columns the equation was also applied in order to the effect of confined concrete core on structural analysis. Beam moment was increased as volumetric ratio of lateral steel was decreased. The effect of longitudinal steel ratios was investigated in CFT columns and was confirmed beam moment variety. The result was appeared reasonable difference in beam moment as longitudinal steel was increased.

  • PDF

Estimation of Drought Rainfall According to Consecutive Duration and Return Period Using Probability Distribution (확률분포에 의한 지속기간 및 빈도별 가뭄우량 추정)

  • Lee, Soon Hyuk;Maeng, Sung Jin;Ryoo, Kyong Sik
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2004.05b
    • /
    • pp.1103-1106
    • /
    • 2004
  • The objective of this study is to induce the design drought rainfall by the methodology of L-moment including testing homogeneity, independence and outlier of the data of annual minimum monthly rainfall in 57 rainfall stations in Korea in terms of consecutive duration for 1, 2, 4, 6, 9 and 12 months. To select appropriate distribution of the data for annual minimum monthy rainfall by rainfall station, the distribution of generalized extreme value (GEV), generalized logistic (GLO) as well as that of generalized pareto (GPA) are applied and the appropriateness of the applied GEV, GLO, and GPA distribution is judged by L-moment ratio diagram and Kolmogorov-Smirnov (K-S) test. As for the annual minimum monthly rainfall measured by rainfall station and that stimulated by Monte Carlo techniques, the parameters of the appropriately selected GEV and GPA distributions are calculated by the methodology of L-moment and the design drought rainfall is induced. Through the comparative analysis of design drought rainfall induced by GEV and GPA distribution by rainfall station, the optimal design drought rainfall by rainfall station is provided.

  • PDF

Proposal of Strength-Based Design Procedure for Improving the Seismic Performance of Steel Ordinary Moment Frames (철골 보통모멘트골조의 내진성능 향상을 위한 강도기반 설계 절차 제안)

  • Kim, Taeo;Han, Sang Whan
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.28 no.1
    • /
    • pp.11-20
    • /
    • 2024
  • The ductility of the system based on the capacity of each structural member constituting the seismic force-resisting system is a significant factor determining the structure's seismic performance. This study aims to provide a procedure to supplement the current seismic design criteria to secure the system's ductility and improve the seismic performance of the steel ordinary moment frames. For the study, a nonlinear analysis was performed on the 9- and 15-story model buildings, and the formation of collapse mechanisms and damage distribution for dynamic loads were analyzed. As a result of analyzing the nonlinear response and damage distribution of the steel ordinary moment frame, local collapse due to the concentration of structural damage was observed in the case where the influence of the higher mode was dominant. In this study, a procedure to improve the seismic performance and avoid inferior dynamic response was proposed by limiting the strength ratio of the column. The proposed procedure effectively improved the seismic performance of steel ordinary moment frames by reducing the probability of local collapse.

Factors affecting force system of orthodontic loop spring (교정용 loop 스프링의 force system에 영향을 주는 요소)

  • Choy, Kwang-Chul;Kim, Kyung-Ho;Park, Young-Chel
    • The korean journal of orthodontics
    • /
    • v.29 no.5 s.76
    • /
    • pp.511-519
    • /
    • 1999
  • The shape of orthodontic retraction spring was varied and force system of each case was obtained using numerical analysis and verified with spring tester. The factors for obtaining biomechanically efficient spring under anatomic limitation were suggested as follows. 1. M/F ratio increases and L/D rate decreases as loop height increases. 2. M/F ratio increases and L/D rate decreases as incorporating more wire above minimum bending moment area. 3. M/F ratio decreases and L/D rate decrease as incorporating more wire below minimum bending moment area. 4. M/F ratio can not be greater than spring height no matter how much wire is incorporated at the apex of the loop. 5. Additional moment is necessary to obtain enough M/F ratio for translation under anatomical limitation. 6. Additional moment should be incorporated at every pah of the spring because M/F ratio and L/D rate decreases as horizontal spring length increases. 7. Material, cross section, and shape of the spring influence L/D rate, whereas M/F ratio is influenced by the shape of the spring independent from material and cross section.

  • PDF

The effects of vertical earthquake motion on an R/C structure

  • Bas, Selcuk;Kalkan, Ilker
    • Structural Engineering and Mechanics
    • /
    • v.59 no.4
    • /
    • pp.719-737
    • /
    • 2016
  • The present study investigated the earthquake behavior of R/C structures considering the vertical earthquake motion with the help of a comparative study. For this aim, the linear time-history analyses of a high-rise R/C structure designed according to TSC-2007 requirements were conducted including and excluding the vertical earthquake motion. Earthquake records used in the analyses were selected based on the ratio of vertical peak acceleration to horizontal peak acceleration (V/H). The frequency-domain analyses of the earthquake records were also performed to compare the dominant frequency of the records with that of the structure. Based on the results obtained from the time-history analyses under the earthquake loading with (H+V) and without the vertical earthquake motion (H), the value of the overturning moment and the top-story vertical displacement were found to relatively increase when considering the vertical earthquake motion. The base shear force was also affected by this motion; however, its increase was lower compared to the overturning moment and the top-story vertical displacement. The other two parameters, the top-story lateral displacement and the top-story rotation angle, barely changed under H and H+V loading cases. Modal damping ratios and their variations in horizontal and vertical directions were also estimated using response acceleration records. No significant change in the horizontal damping ratio was observed whereas the vertical modal damping ratio noticeably increased under H+V loading. The results obtained from this study indicate that the desired structural earthquake performance cannot be provided under H+V loading due to the excessive increase in the overturning moment, and that the vertical damping ratio should be estimated considering the vertical earthquake motion.