• Title/Summary/Keyword: moment equations

Search Result 527, Processing Time 0.025 seconds

ON THE GENERAL DECAY STABILITY OF STOCHASTIC DIFFERENTIAL EQUATIONS WITH UNBOUNDED DELAY

  • Meng, Xuejing;Yin, Baojian
    • Journal of the Korean Mathematical Society
    • /
    • v.49 no.3
    • /
    • pp.515-536
    • /
    • 2012
  • This work focuses on the general decay stability of nonlinear stochastic differential equations with unbounded delay. A Razumikhin-type theorem is first established to obtain the moment stability but without almost sure stability. Then an improved edition is presented to derive not only the moment stability but also the almost sure stability, while existing Razumikhin-type theorems aim at only the moment stability. By virtue of the $M$-matrix techniques, we further develop the aforementioned Razumikhin-type theorems to be easily implementable. Two examples are given for illustration.

Stress Index Development for Piping with Trunnion Attachment Under Pressure and Moment Loadings

  • Lee, Dae-hee;Kim, Jong-Min;Park, Sung-ho
    • Nuclear Engineering and Technology
    • /
    • v.29 no.4
    • /
    • pp.310-319
    • /
    • 1997
  • A finite element analysis of a trunnion pipe anchor is presented. The structure is analyzed for the case of internal pressure and moment loadings. The stress results are categorized into the average (membrane) stress, the linearly varying (bending) stress and the peak stress through the thickness. The resulting stresses are interpreted per Section III of the ASME Boiler and Pressure Vessel Code from which the Primary(B$_1$), Secondary(C$_1$) and Peak(K$_1$) stress indices for pressure, the Primary (B$_2$), Secondary(C$_2$) and Peak(K$_2$) stress indices for moment are developed. Based on the comparison between stress value by stress indices derived in this paper and stress value represented by the ASME Code Case N-391-1, the empirical equations for stress indices are effectively used in the piping stress analysis. Therefore, the use of empirical equations can simplify the procedure of evaluating the local stress in the piping design stage.

  • PDF

Torsional Analysis of RC Beam Using Average Strains (평균변형률을 이용한 RC보의 비틀림 해석)

  • Park, Chang-Kyu
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.6 no.2
    • /
    • pp.157-165
    • /
    • 2002
  • Nonlinear analysis of the reinforced concrete beam subjected to torsion is presented. Seventeen equations involving seventeen variables are derived from the equilibrium equation, compatibility equation, and the material constitutive laws to solve the torsion problem. Newton method was used to solve the nonlinear simultaneous equations and efficient algorithms are proposed. Present model covers the behavior of reinforced concrete beam under pure torsion from service load range to ultimate stage. Tensile resistance of concrete after cracking is appropriately considered. The softened concrete truss model and the average stress-strain relations of concrete and steel are used. To verify the validity of present model, the nominal torsional moment strengths according to ACI-99 code and the ultimate torsional moment by present model are compared to experimental torsional strengths of 55 test specimens found in literature. The ultimate torsional moment strengths by the present model show good results.

Analysis and Design of Waveguide Slotted Array Antenna using Method of Moment. (모멘트법을 적용한 구형도파관 슬롯 배열 안테나 해석 및 설계)

  • Choe, Seong-Yeol;Go, Yeong-Ho
    • The Transactions of the Korean Institute of Electrical Engineers C
    • /
    • v.51 no.8
    • /
    • pp.375-381
    • /
    • 2002
  • A rigorous analysis of a broad wall slot array is presented. The slot is longitudinal and offset from the center line in the rectangular waveguide. Pertinent integral equations are developed, taking into account finite wall thickness. The mothed of moment with entire basis function is used to solve a pair of coupled-integral equations, derived from the electromagnetic boundary conditions using modified Green's function, to find the tangential electric field on the upper and lower surfaces of the slot. Numerical results for resonant length and scattering parameters of the slots are Presented over a range of offset. Computed results are compared with experimental result.

Stiffness values and static analysis of flat plate structures

  • Unluoglu, Esref
    • Structural Engineering and Mechanics
    • /
    • v.6 no.4
    • /
    • pp.427-437
    • /
    • 1998
  • Flat plate constructions are structural systems which are directly placed on columns without any beams. Various solution methods have been introduced for the solution of flat plate structures under horizontal and vertical loads. In most of these solution methods, models comprising of one column and one plate have been studied. In other solutions, however, co-behavior of two reciprocal columns has been investigated. In this study, interrelations of all the columns on one storey have been examined. At the end of the study structure consisting of nine columns and four plates has been chosen as a model. Then unit moment has been successively applied to each of these columns and unit moments carried over the other columns have been found. By working out solutions far plates and columns varying in ratio, carry-over factors have been found and these factors given in tables. In addition, fixed-end moment factors on the columns arising due to vertical load were also calculated. Then citing slope-deflection equations to which these results could be applied, some examples of moment and horizontal equilibrium equations have been given.

Design and Strain Analysis of Precision 3-component Load Cell (정밀 3분력(Fz, Fy, Mz) 로드셀의 설계 및 변형률해석)

  • Kim, Gab-Soon;Rhee, Se-Hun;Um, Ki-Woan
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.16 no.3 s.96
    • /
    • pp.222-232
    • /
    • 1999
  • This paper describes the development of a precision 3-component load cell with plate beams which may be used for measuring forces Fx, Fy and moment Mz simultaneously in industry. We have derived equations to predict the bending strains on the surface of the beams under forces or moment. We have also determined the attachment location of strain gages of each sensor and fabricated 3-component load cell. To evaluate the rated strain and interference error of each sensor, we have carried out characteristic test of precision 3-component load cell. It reveals that the rated strain calculated from the derived equations are good agreement with the results from Finite Element Method analysis.

  • PDF

Second-Moment Closure Modelling of Particle-Laden Homogeneous Turbulent Shear Flows (고체입자가 부상된 균질 난류 전단유동의 2차-모멘트 모형화)

  • Shin, Jong-Keun;Seo, Jeong-Sik;Han, Seong-Ho;Choi, Young-Don
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.31 no.1 s.256
    • /
    • pp.29-39
    • /
    • 2007
  • A second-moment closure is applied to the prediction of a homogeneous turbulent shear flow laden with mono-size particles. The closure is curried out based on a 'two-fluid' methodology in which both carrier and dispersed phases are considered in the Eulerian frame. To reduce the number of coupled differential equations to be solved, Reynolds stress transport equations and algebraic stress models are judiciously combined to obtain the Reynolds stress of carrier and dispersed phases in the mean momentum equation. That is, the Reynolds stress components for carrier and dispersed phases are solved by modelled transport equations, but the fluid-particle velocity covariance tensors are treated by the algebraic models. The present predictions for all the components of Reynolds stresses are compared to the DNS data. Reasonable agreements are observed in all the components, and the effects of the coupling of carrier and dispersed phases are properly captured in every aspects.

Time Dependent Analysis Considering the Construction Sequences in Bridges of Movable Scaffolding System (MSS) (시공단계를 고려한 MSS 공법 교량의 시간의존적 거동해석)

  • Kwak Hyo-Gyoung;Son Je-Kuk
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2005.04a
    • /
    • pp.167-174
    • /
    • 2005
  • Through time-dependent analyses of RC bridges constructed by a movable scaffolding system (MSS) considering the construction sequence and creep deformation of concrete, structural responses related to the member forces are reviewed. On the basis of the compatibility condition and equilibrium equation at every construction stage, basic equations that can describe the moment variation with time in movable scaffolding construction are derived. By using the introduced relations, the design moment and its variation over time can easily be obtained with only the elastic analysis results and without additional time-dependent analyses considering the construction sequences. In addition, the design moments determined by the introduced equations are compared with the results from a rigorous numerical analysis with the objective of establishing the relative efficiencies of the introduced equations.

  • PDF

Comparison Between Two Analytical Solutions for Random Vibration Responses of a Spring-Pendulum System with Internal Resonance (내부공진을 가진 탄성진자계의 불규칙진동응답을 위한 두 해석해의 비교)

  • 조덕상;이원경
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 1998.04a
    • /
    • pp.399-406
    • /
    • 1998
  • An investigation into the stochastic bifurcation and response statistits of an autoparameteric system under broad-band random excitation is made. The specific system examined is a spring-pendulum system with internal resonance, which is known to be a good model for a variety of engineering systems, including ship motions with nonlinear coupling between pitching and rolling motions. The Fokker-Planck equations is used to generate a general first-order differential equation in the dynamic moment of response coordinates. By means of the Gaussian and non-Gaussian closure methods the dynamic moment equations for the random responses of the system are reduced to a system of autonomous ordinary differential equations. In view of equilibrium solutions of this system and their stability we examine the stochastic bifurcation and response statistics. The analytical results are compared with results obtained by Monte Carlo simulation.

  • PDF

Stochastic Response of a Hinged-Clamped Beam (Hinged-clamped 보의 확률적 응답특성)

  • Cho, Duk-Sang
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.3 no.1
    • /
    • pp.43-51
    • /
    • 2000
  • The response statistics of a hinged-clamped beam under broad-band random excitation is investigated. The random excitation is applied at the nodal point of the second mode. By using Galerkin's method the governing equation is reduced to a system of nonautonomous nonlinear ordinary differential equations. A method based upon the Markov vector approach is used to generate a general first-order differential equation in the dynamic moment of response coordinates. By means of the Gaussian and non-Gaussian closure methods the dynamic moment equations for the random responses of the system are reduced to a system of autonomous ordinary differential equations. The case of two mode interaction is considered in order to compare it with the case of three mode interaction. The analytical results for two and three mode interactions are also compared with results obtained by Monte Carlo simulation.

  • PDF