• Title/Summary/Keyword: moment control

Search Result 994, Processing Time 0.031 seconds

Optimum Yaw Moment Distribution with Electronic Stability Control and Active Rear Steering (자세 제어 장치와 능동 후륜 조향을 이용한 최적 요 모멘트 분배)

  • Yim, Seongjin
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.20 no.12
    • /
    • pp.1246-1251
    • /
    • 2014
  • This article presents an optimum yaw moment distribution scheme for a vehicle with electronic stability control (ESC) and active rear steering (ARS). After computing the control yaw moment in the yaw moment controller, it should be distributed into tire forces, generated by ESC and ARS. In this paper, yaw moment distribution is formulated as an optimization problem. New objective function is proposed to tune the relative magnitudes of the tire forces. Weighed pseudo-inverse control allocation (WPCA) is adopted to solve the problem. To check the effectiveness of the proposed scheme, simulation is performed on a vehicle simulation package, CarSim. From the simulation, the proposed optimum yaw moment distribution scheme is shown to effective for vehicle stability control.

Improvement of Vehicle Directional Stability in Cornering Based on Yaw Moment Control

  • Youn, Weon-Young;Song, Jae-Bok
    • Journal of Mechanical Science and Technology
    • /
    • v.14 no.8
    • /
    • pp.836-844
    • /
    • 2000
  • In this research any abnormal motion of a vehicle is detected by utilizing the difference between the reference and actual yaw velocities as sell as the information on vehicle slip angle and slip angular velocity. This information is then used as a criterion for execution of the yaw moment control. A yaw moment control algorithm based on the brake control is proposed for improving the directional stability of the vehicle. The controller executes brake controls to provide each wheel with adequate brake pressures, which generate the needed yaw moment. It is shown that the proposed yaw moment control logic can provide excellent cornering capabilities even on low friction roads. This active control scheme can prevent a vehicle from behaving abnormally, and can assist normal drivers in coping with dangerous situations as well as experienced drivers.

  • PDF

Unified Chassis Control for Improvement of Vehicle Lateral Stability (차량 횡방향 안정성 향상을 위한 통합섀시 제어)

  • Cho, Wan-Ki;Yi, Kyoung-Su;Yoon, Jang-Yeol
    • Proceedings of the KSME Conference
    • /
    • 2007.05a
    • /
    • pp.1126-1131
    • /
    • 2007
  • This paper presents unified chassis control (UCC) to improve the vehicle lateral stability. The unified chassis control implies combined control of active front steering (AFS), electronic stability control (ESC) and continuous damping control (CDC). A direct yaw moment controller based on a 2-D bicycle model is designed by using sliding mode control law. A direct roll moment controller based on a 2-D roll model is designed. The computed direct yaw moment and the direct roll moment are generated by AFS, ESP and CDC control modules respectively. A control authority of the AFS and the ESC is determined by tire slip angle. Computer simulation is conducted to evaluate the proposed integrated chassis controller by using the Matlab, simulink and the validated vehicle simulator. From the simulation results, it is shown that the proposed unified chassis control can provide with improved performance over the modular chassis control.

  • PDF

Development of the Robot's Gripper Control System using DSP (DSP 를 이용한 로봇의 그리퍼 제어장치의 개발)

  • Kim Gab-Soon
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.23 no.5 s.182
    • /
    • pp.77-84
    • /
    • 2006
  • This paper describes the design and implementation of a robot's gripper control system. In order to safely grasp an unknown object using the robot's gripper, the gripper should detect the force of gripping direction and the force of gravity direction, and should perform the force control using the detected forces and the robot's gripper control system. In this paper, the robot's gripper control system is designed and manufactured using DSP(Digital Signal Processor), and the gripper is composed of two 6-axis force/moment sensors which measures the Fx force(force of x-direction), Fy force, Fz force, and the Mx moment(moment of x-direction), My moment, Mz moment at the same time. The response characteristic test of the system is performed to determine the proportional gain Kp and the integral gain Ki of PI controller. As a result, it is shown that the developed robot's gripper control system grasps an unknown object safely.

Development of Active Yaw Moment Control Algorithm Based on Brake Slip Control (브레이크 슬립 제어에 기초한 차량 능동 요모멘트 제어 알고리즘의 개발)

  • Youn, Weon-Young;Song, Jae-Bok
    • Proceedings of the KSME Conference
    • /
    • 2000.04a
    • /
    • pp.487-492
    • /
    • 2000
  • Yaw moment control algorithm for improving stability of a vehicle in cornering is presented in this paper. A change of the yaw moment according to an increment in brake ship at each wheel is examined and reflected in the control algorithm. This control algorithm computes the target yaw velocity as the vehicle motion desired by the driver for directional stability control in cornering and it makes the actual yaw velocity follow the target one. The yaw moment control was achieved by brake slip control and simple brake slip control logic was introduced in this paper.

  • PDF

Vibration Control of a Single-Link Flexible Manipulator Using Reaction Moment Estimator (반력모멘트 추정기를 이용한 단일 링크 유연 조작기의 진동제어)

  • Shin, Hocheol;Han, Sangsoo;Kim, Seungho
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.15 no.2 s.95
    • /
    • pp.169-175
    • /
    • 2005
  • In this paper, a novel vibration control scheme for a single-link flexible manipulator system without using a vibration feedback sensor is proposed. In order to achieve the vibration information of the flexible link, a reaction moment estimator based on the dynamic characteristics of the flexible manipulator is proposed. While the manipulator is maneuvering the reaction moment is reciprocally acting on the flexible link and the hub inertia due to the vibration of the link. A sliding mode controller based on the equivalent rigid body dynamics corresponding to the proposed flexible manipulator is then augmented with the reaction moment estimator to realize a decentralized control system. The reaction moment estimator is implemented via the first order low pass filter. The performance of the proposed control scheme is verified by computer simulation and experiment.

Real-time Unbalance Moment Compensation Method for Line of Sight(LOS) Stabilization Control System (시선안정화 제어시스템의 실시간 불균형 모멘트 보상기법)

  • Jo, Sihun
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.26 no.3
    • /
    • pp.323-330
    • /
    • 2016
  • This paper describes real-time unbalance moment compensation method for line of sight(LOS) stabilization control systems. The factors of system inertia, frictions and unbalance moment affect the control accuracy of drive systems that are equipped to on the move(OTM) platforms requiring LOS stabilization function. In case of the unbalance moment among those factors is continuously changed as variation of relative angle between gravity vector and drive torque vector. Then, consideration of the effect in real-time is very complicate. Therefore, its effect should be designed to be minimized, however, designing it almost zero is impossible in real condition. In other words, it is hard to achieve target performance overcoming stability issue of highly unbalanced systems. To solve these problems, this paper proposes calculation method of unbalance moment by using measured sensor data for LOS stabilization control and its use for control compensation. Also, kinematical converting process and control structure for compensation are explained. The effectiveness of the proposed method as variation of unbalance moment is verified under simulation circumstance modeled by assuming LOS control system with 2-axis gimbal structure.

QFT application on force controller design for aircraft control surface load simulator (항공기 조종면 부하재현 구동장치의 force control)

  • 남윤수;이진영;이기두
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1997.10a
    • /
    • pp.1684-1687
    • /
    • 1997
  • A dynamic load simulator which can reproduce on-ground the hinge moment of aircraft control surface is and essential rig for the loaded performance test of aircraft test of aircraft acutation system. The hinge moment varies wide in the aricraft flight enveloped depending on specific flight condition and maneuvering status. To replicate the wide spectrum of this hinge moment variation within some accuracy bounds, a force controller is designed based on the Quantiative Feedback Theory (AFT). Through the analysis on hinge moment dynamics, a design specification for the force controller is suggested. The efficacy of QFT force controller is verivied by simulation, in which combined aricraft dynamics/flight control law and hydraulic actuation system dynamics of aircraft control surface are considered.

  • PDF

Sensorless Vibration Control of a Single-Link Flexible Manipulator (단일링크 유연매니퓰레이터의 센서리스 진동제어)

  • 한상수;신호철;서용칠;김승호
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2004.05a
    • /
    • pp.233-236
    • /
    • 2004
  • In this paper, a new sensorless vibration control scheme is proposed for a flexible manipulator system. A robust sliding mode controller incorporating with a ‘reaction moment observer’ used for the estimation of the reaction moment reciprocally acting on flexible arm and hub inertia is introduced to achieve desired control target. The rigid body dynamics of the single-link flexible manipulator is simply considered in the design of the sliding mode controller. Then, the reaction moment is estimated by the proposed reaction moment observer to suppress the residual vibration of the flexible arm. The performance of the proposed control scheme is verified by computer simulation and experiment.

  • PDF