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Abstract. In this paper, we consider the target control problem for the

linear systems by using the solution of the Hausdorff moment problem.
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1. From beginning to obtaining the data

Consider the following linear continuous system ẋ (t) = Ax (t) +Bu (t) ,
y (t) = C (t)x (t) ,

s.t. x (0) = x0, and r (θ) = y (θ) ,
(1)

where x (t) ∈ Rn is the state vector, u (t) ∈ Rm is the input vector, y (t) ∈ Rp is
the output vector, r (t) ∈ Rp is the target signal, A ∈ Rn×n, B ∈ Rn×m, C (t) ∈
Rp×n. Given an initial condition x0 ∈ Rn, and a time θ, find one of the controls
|u (t)| ≤ 1 such that the trajectory from x0 of the system (1) arrives to the target
signal at time θ. This problem is called the target control (TC) problem.

Moment problem is related to operator theory and has many applications (see
[1], [2], [4], and [5], etc). In this paper, we consider the target control problem
for the linear systems by using the solution of the Hausdorff moment problem.

Let C0,L be the set of all measurable functions on [0, θ] such that 0 ≤ f (τ) ≤ L
for all τ ∈ [0, θ] . Then the L-Markov moment problem (MMP) for the interval
[0, θ] is stated as follows: Given a finite sequence of real numbers c0, c1, . . . , ck,
find the set of functions f ∈ C0,L such that

cj =

∫ θ

0

τ jf (τ) dτ, j = 0, 1, . . . , k.
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Let M [0, θ] be the set of all nonnegative measures on [0, θ] . Then the Haus-
dorff moment problem (HMP) for an interval [0, θ] is stated as follows: Given a
finite sequence of real numbers s0, s1, . . . , sk, find the set of measures σ ∈M [0, θ]
such that

sj =

∫ θ

0

τ jdσ (τ) , j = 0, 1, . . . , k.

Recall from [5] that there is a bijection between the set C0,L and the set of

measures σ ∈M [0, θ] satisfying
∫ θ
0

dσ (τ) = 1. This bijection is given by∫ θ

0

dσ (τ)

τ − z
= −1

z
exp

(
1

L

∫ θ

0

f (τ) dτ

z − τ

)
,

which determines the relation between (cj)
k−1
j=0 and (sj)

k
j=0: s0 = 1, s1 = c1, and

sk =
1

k!

∣∣∣∣∣∣∣∣∣∣∣∣∣

c1 −1 · · · 0

2c2 c1
. . . 0

...
. . .

. . .
...

(k − 1) ck−1 (k − 2) ck−2
. . . − (k − 1)

kck (k − 1) ck−1 · · · c1

∣∣∣∣∣∣∣∣∣∣∣∣∣
, k ≥ 2. (2)

By [5, Theorem 2.1], we know that the MMP is solvable with moments (cj)
n−1
j=0

if and only if the HMP with (sj)
n
j=0 is solvable. As usual, we let δij be the

Kronecker symbol.

Theorem 1. Let A = (δi,j+1)
n
i,j=1 , B =

(
1 0 0 · · · 0

)T ∈ Rn, and
C (θ) be invertible. And let

Φ (θ) := e−AθC−1 (θ) r (θ) =
(

Φ1 (θ) , Φ2 (θ) , · · · , Φn (θ)
)T
.

Then the TC problem (1) is solvable if and only if the Markov moment problem
with L = 1 is solvable with entries ci (i = 1, 2, . . . n) as the following

ci =
(Φi (θ)− x0i) i! + (−1)

i−1
θi

2 (−1)
i−1

i
. (3)

Proof. Since C (θ) is invertible, we have

C−1 (θ) r (θ) = x (θ) = eAθ

(
x0 +

∫ θ

0

e−AτBu (τ) dτ

)
.

That is,

e−AθC−1 (θ) r (θ)− x0 =

∫ θ

0

e−AτBu (τ) dτ.
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Since u (τ) = 2f (τ)− 1,∫ θ

0

e−AτBu (τ) dτ = 2

∫ θ

0

e−AτBf (τ) dτ −
∫ θ

0

e−AτBdτ,

and

e−AτB =


1 0 0 · · · 0 0
−τ 1 0 · · · 0 0
τ2

2! −τ 1 · · · 0 0
...

...
. . .

. . . 1 0
(−1)n−1τn−1

(n−1)! · · · · · · · · · −τ 1





1
0
0
...
0
0


=


1
−τ
τ2

2!
...

(−1)n−1τn−1

(n−1)!

 ,

we obtain

(Φi (θ)− x0i) i! + (−1)
i−1

θi

2 (−1)
i−1

i
=

∫ θ

0

τ i−1f (τ) dτ, i = 1, 2, . . . n.

Thus, if the Markov moment problem with L = 1 is solvable with entries ci
as in (3), then the TC problem (1) is solvable, i.e., the trajectory x(t) satisfies
x (0) = x0, and r (θ) = y (θ). The inverse implication can be reserved step by
step. �

In [10], the authors introduced the method for obtaining the admissible control
of the system (1). We summerize that as following algorithm.

I. Calculate all data ci of (3).
II. Calculate si by (2).
III. Calculate Hi, ui, vi, T and RT (z) by the following relations

if n = 2k + 1 if n = 2k

H1


s1 · · · sk+1

...
. . .

...

sk+1 · · · s2k+1




s0 · · · sk
...

. . .
...

sk · · · s2k


H2


θs0 − s1 · · · θsk − sk+1

...
. . .

...
θsk − sk+1 · · · θs2k − s2k+1




θs1 − s2 · · · θsk − sk+1

...
. . .

...
θsk − sk+1 · · · θs2k−1 − s2k


u1 (−s0,−s1, . . . ,−sk)T (0,−s0, . . . ,−sk−1)T

T (δi,j+1)ki,j=0 (δi,j+1)ki,j=0

u2 (θT − 1)u1 (s1 − θs0, s2 − θs1, . . . , sk − θsk−1)T

v1 (1, 0, . . . , 0)T ∈ Rk+1 (1, 0, . . . , 0)T ∈ Rk+1

v2 (1, 0, . . . , 0)T ∈ Rk+1 (1, 0, . . . , 0)T ∈ Rk

T1 (δi,j+1)ki,j=0 (δi,j+1)ki,j=0

T2 (δi,j+1)ki,j=0 (δi,j+1)ki,j=0

RT (z) (I − zT )−1 (I − zT )−1
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IV. Calculate U11, U12, U21, and U22 by the following relations

if n is odd if n is even

U11 (z) 1− zu∗2RT∗
1

(z)H−1
2 v1 1− zu∗1RT∗

1
(z)H−1

1 v1

U12 (z) u∗1RT∗
1

(z)H−1
1 u1 M − zu∗1RT∗

1
(z)H−1

1 v1M + zu∗1RT∗
1

(z)H−1
1 u1

U21 (z) − (θ − z) zv∗1RT∗
1

(z)H−1
2 v1 −zv∗1RT∗

1
(z)H−1

1 v1

U22 (z) 1 + zv∗1RT∗
1

(z)H−1
1 u1 1− zv∗1RT∗

1
(z)H−1

1 v1M + zv∗1RT∗
1

(z)H−1
1 u1

M
(

1 + θ
(
u∗1H

−1
1 v1 − u∗2H

−1
2 v2

))(
θv∗1H

−1
1 v1

)−1

V. Let z = t+ iε, and calculate −zs (z) by the following relations

−zs (z) =
U11 (θ − (t+ iε)) (F + iG+ iπ) + U12

U21 (θ − (t+ iε)) (F + iG+ iπ) + U22
,

where

F =
1

2
ln

(θ − t)2 + ε2

t2 + ε2
, G = arctan

θε

t2 − Tt+ ε2
.

VI. Let ε = 0, and calculate the real part X and the imaginary part Y of
−zs (z) .

VII. Calculate X and Y, and obtain

u (t) = − 2

π
arg

Y

X
− 1.

Theorem 2. The TC problem (if n = 1)

ẋ = u (t) , |u| ≤ 1, x (0) = x0, s.t. x (θ) = xf , (4)

is admissible if and only if |x0 − xf | ≤ θ. In this case, u (t) = − 2
π arg Y

X − 1,
where

X =
1

8

{
t (t− θ)3 (θ − x0 + xf )

2
(2t− θ − x0 + xf )F 2

+
1

2
(t− θ)

(
θ2 − (x0 − xf )

2
)(

θ2 − (x0 − xf )
2

+ 8t (t− θ)
)
F

+π2t (t− θ)3 (θ − x0 + xf )
2

(2t− θ − x0 + xf )

+ (θ + x0 − xf )
2

(2t− θ + x0 − xf )
}
, with F = ln

θ − t
t

,

Y =
1

16
π (t− θ) (θ − x0 + xf )

2
(θ + x0 − xf )

2 ≤ 0.

Proof. By the algorithm. �

Corollary 3. The TC problem (if n = 1)

ẋ = ax+ u (t) , a < 0, |u| ≤ 1, x (0) = x0, s.t. x (θ) = xf , (5)

is admissible if and only if
∣∣x0 − xfe−aθ∣∣ ≤ θ. In this case, u (t) =

(
− 2
π arg Y

X − 1
)

eat, where X and Y are as in Theorem 2.
Proof. Let z = xe−at, then by Theorem 2, we know that

ż = u (t) e−at := ũ (t) , |ũ| ≤ 1, z (0) = z0, s.t. z (θ) = zf ,
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is admissible if and only if |z0 − zf | ≤ θ, that is,
∣∣x0 − xfe−aθ∣∣ ≤ θ. In this case,

ũ (t) = − 2
π arg Y

X − 1, that is, u (t) =
(
− 2
π arg Y

X − 1
)
eat. �

2. Examples

In this section, we give some interesting examples, for n = 2 and n = 3.

Example 1. We consider
ẋ (t) =

(
0 0
1 0

)
x (t) +

(
1
0

)
u (t) ,

y (t) =

(
1 sin πt

3
0 1

)
x (t) ,

(6)

with initial state vector point x (0) = (x01, x02)
T

and output terminal point

y (3) = (2, 3)
T
, i.e., θ = 3. In this case, we can find the admissible region

Rad =

{
(x01, x02)

T
∣∣∣ 1

4
x201 −

5

2
x01 −

5

4
≤ x02 ≤ −

1

4
x201 −

1

2
x01 +

5

4

}
.

Fig. 1. The admissible region Rad of system (6).
Green line is x02 = 1

4x
2
01 − 5

2x01 −
5
4 , red line is x02 = − 1

4x
2
01 − 1

2x01 + 5
4 .

In particular, we take x01 = 0, x02 = 1. Then (0, 1)
T

is in the above admissible
region and according to the algorithm, we finally obtain

X =
1

81
t (t− 3) (t (t− 3) (20t− 59) (20t− 9))

(
ln

3− t
t

)2

+
1

81
t (t− 3)

(
1776t2 − 480t3 − 1062t+ 81

)(
ln

3− t
t

)
+

1

81
t (t− 3)

(
π2t (t− 3) (20t− 59) (20t− 9) + 9 (4t− 1) (4t− 3)

)
,

Y = πt (t− 3) .
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The numerical roots of X in [0, 3] are t1 ≈ 0.0064797, t2 ≈ 0.459614. Hence
the control is given by the following

u (t) =


− 2
π

(
arctan

(
Y
X

)
− π

)
− 1, if 0 ≤ t ≤ 0.0064797,

− 2
π

(
arctan

(
Y
X

))
− 1, if 0.0064797 ≤ t ≤ 0.459614,

− 2
π

(
arctan

(
Y
X

)
− π

)
− 1. if 0.459614 ≤ t ≤ 3,

Fig. 2. The plot of u (t) for system (6)

The plots of state vector and output curve of system (6) are as following.

Fig. 3. The state vector (pink) and output curve (green) of system (6)

Example 2. We consider
ẋ (t) =

 0 0 0
1 0 0
0 1 0

x (t) +

 1
0
0

u (t) ,

y (t) =

 1 sin πt
3 0

0 1 0
0 0 1

x (t) ,

(7)
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with initial state vector point x (0) =
(
0, 12 , 0

)T
and output terminal point

y (3) = (1, 2, 3)
T
, i.e., θ = 3. In this case, we can obtain

X =
1

4
t2 (3t− 5)

(
−8t+ 3t2 + 2

)
(t− 3)

3

(
ln

3− t
t

)2

+
1

5
t (t− 3)

(
−60t+ 101t2 − 54t3 + 9t4 + 5

)(
ln

3− t
t

)
+

(
1

4
π2t2 (3t− 5)

(
−8t+ 3t2 + 2

)
(t− 3)

3
+

1

25
t (3t− 4)

(
−10t+ 3t2 + 5

))
,

Y = πt (t− 3) .

The numerical roots of X in [0, 3] are t1 ≈ 0.005692, t2 ≈ 0.289924, t3 ≈
1.66483, t4 ≈ 2.34597, and t5 ≈ 2.9001. Hence the control is given by the follow-
ing

u (t) =



− 2
π

(
arctan

(
Y
X

)
− π

)
− 1, if 0 ≤ t ≤ 0.005692,

− 2
π

(
arctan

(
Y
X

))
− 1, if 0.005692 ≤ t ≤ 0.289924,

− 2
π

(
arctan

(
Y
X

)
− π

)
− 1, if 0.289924 ≤ t ≤ 1.66483,

− 2
π

(
arctan

(
Y
X

))
− 1, if 1.66483 ≤ t ≤ 2.34597,

− 2
π

(
arctan

(
Y
X

)
− π

)
− 1, if 2.34597 ≤ t ≤ 2.9001,

− 2
π

(
arctan

(
Y
X

))
− 1. if 2.9001 ≤ t ≤ 3,

Fig. 4. The plot of u (t)

The plots of state vector and output vector of system (7) are as following.
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Fig. 5. The plots of state vector and output vector of system (7)
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