• 제목/요약/키워드: moment beam-to-column joints

검색결과 107건 처리시간 0.026초

Experimental study of the behavior of beam-column connections with expanded beam flanges

  • Ma, Hongwei;Wang, Jiwei;Lui, Eric M.;Wan, Zeqing;Wang, Kun
    • Steel and Composite Structures
    • /
    • 제31권3호
    • /
    • pp.319-327
    • /
    • 2019
  • This paper describes an experimental study of steel beam-column connections with or without expanded beam flanges with different geometries. The objectives of this study are to elucidate the cyclic behavior of these connections, identify the location of the plastic hinge zone, and provide useful test data for future numerical simulations. Five connection specimens are designed and tested under cyclic load. The test setup consists of a beam and a column connected together by a connection with or without expanded beam flanges. A constant axial force is applied to the column and a time varying point load is applied to the free end of the beam, inducing shear and moment in the connection. Because the only effect to be studied in the present work is the expanded beam flange, the sizes of the beam and column as well as the magnitude of the axial force in the column are kept constant. However, the length, width and shape of the expanded beam flanges are varied. The responses of these connections in terms of their hysteretic behavior, failure modes, stiffness degradation and strain variations are experimentally obtained and discussed. The test results show that while the influence of the expanded beam flanges on hysteretic behavior, stiffness degradation and energy dissipation capacity of the connection is relatively minor, the size of the expanded beam flanges does affect the location of the plastic hinge zone and strain variations in these beam-column joints. Furthermore, in terms of ductility, moment and rotational capacities, all five connections behave well. No weld fracture or premature failure occurs before the formation of a plastic hinge in the beam.

Friction-based beam-to-column connection for low-damage RC frames with hybrid trussed beams

  • Colajanni, Piero;Pagnotta, Salvatore
    • Steel and Composite Structures
    • /
    • 제45권2호
    • /
    • pp.231-248
    • /
    • 2022
  • Hybrid Steel-Trussed Concrete Beam (HSTCB) is structural typology suitable for light industrialization. HSTCBs usually cover long span with small depths, which lead to significant amount of longitudinal rebars. The latter make beam-column joints more prone to damage due to earthquake-induced cyclic actions. This phenomenon can be avoided using friction-based BCCs. Friction devices at Beam-to-Column Connections (BCCs) have become promising solutions to reduce the damage experienced by structural members during severe earthquakes. Few solutions have been developed for cast-in-place Reinforced Concrete (RC) and steel-concrete composite Moment Resisting Frames (MRFs), because of the difficulty of designing cost-effective damage-proof connections. This paper proposes a friction-based BCC for RC MRFs made with HSTCBs. Firstly, the proposed connection is described, and its innovative characteristics are emphasized. Secondly, the design method of the connection is outlined. A detailed 3D FE model representative of a beam-column joint fitted with the proposed connection is developed. Several monotonic and cyclic analyses are performed, investigating different design moment values. Lastly, the numerical results are discussed, which demonstrate the efficiency of the proposed solution in preventing damage to RC members, and in ensuring satisfactory dissipative capacity.

Seismic behaviour of gravity load designed flush end-plate joints

  • Cassiano, David;D'Aniello, Mario;Rebelo, Carlos
    • Steel and Composite Structures
    • /
    • 제26권5호
    • /
    • pp.621-634
    • /
    • 2018
  • Flush end-plate (FEP) beam-to-column joints are commonly used for gravity load resisting parts in steel multi-storey buildings. However, in seismic resisting structures FEP joints should also provide rotation capacity consistent with the global structural displacements. The current version of EN1993-1-8 recommends a criterion aiming at controlling the thickness of the end-plate in order to avoid brittle failure of the connection, which has been developed for monotonic loading conditions assuming elastic-perfectly plastic behaviour of the connection's components in line with the theory of the component method. Hence, contrary to the design philosophy of the hierarchy of resistances implemented in EN1998-1, the over strength and the hardening of the plastic components are not directly accounted for. In light of these considerations, this paper describes and discusses the results obtained from parametric finite element simulations aiming at investigating the moment-rotation response of FEP joints under cyclic actions. The influence of bolt diameter, thickness of end-plate, number of bolt rows and shape of beam profile on the joint response is discussed and design requirements are proposed to enhance the ductility of the joints.

Experimental and numerical studies on cyclic behavior of continuous-tenon joints in column-and-tie timber construction

  • Qi, Liangjie;Xue, Jianyang;Xu, Dan
    • Structural Engineering and Mechanics
    • /
    • 제75권5호
    • /
    • pp.529-540
    • /
    • 2020
  • The mechanical properties of timber construction have drawn more attention after the 2013 Lushan earthquake. A strong desire to preserve this ancient architectural styles has sprung up in recent years, especially for residential buildings of the mountainous areas. In the column-and-tie timber construction, continuous-tenon joints are the most common structural form to connect the chuanfang (similar to the beam in conventional structures) and the column. To study the cyclic performance of the continuous-tenon joints in column-and-tie timber construction, the reversed lateral cyclic loading tests were carried out on three 3/4 scale specimens with different section heights of the chuanfang. The mechanical behavior was assessed by studying the ultimate bending capacity, deformation ductility and energy dissipation capacity. Test results showed that the slippage of chuanfang occurred when the specimens entered the plastic stage, and the slippage degree increased with the increase of the section height of chuanfang. An obvious plastic deformation of the chuanfang occurred due to the mutual squeezing between the column and chuanfang. A significant pinching was observed on the bending moment-rotation curves, and it was more pronounced as the section height of chuanfang increased. The further numerical investigations showed that the flexural capacity and initial stiffness of the continuous-tenon joints increased with the increase of friction coefficient between the chuanfang and the column, and a more obvious increasing of bending moment occurred after the material yielding. The compressive strength perpendicular to grain of the material played a more significant role in the ultimate bending capacity of continuous-tenon joints than the compressive strength parallel to grain.

Simplified beam-column joint model for reinforced concrete moment resisting frames

  • Kanak Parate;Onkar Kumbhar;Ratnesh Kumar
    • Structural Engineering and Mechanics
    • /
    • 제89권1호
    • /
    • pp.77-91
    • /
    • 2024
  • During strong seismic events, inelastic shear deformation occurs in beam-column joints. To capture inelastic shear deformation, an analytical model for beam-column joint in reinforced concrete (RC) frame structures has been proposed in this study. The proposed model has been developed using a rotational spring and rigid links. The stiffness properties of the rotational spring element have been assigned in terms of a moment rotation curve developed from the shear stress-strain backbone curve. The inelastic rotation behavior of joint has been categorized in three stages viz. cracking, yielding and ultimate. The joint shear stress and strain values at these stages have been estimated using analytical models and experimental database respectively. The stiffness properties of joint rotational spring have been modified by incorporating a geometry factor based on dimensions of adjoining beam and column members. The hysteretic response of the joint rotational spring has been defined by a pivot hysteresis model. The response of the proposed analytical model has been verified initially at the component level and later at the structural level with the two actually tested RC frame structures. The proposed joint model effectively emulates the inelastic behavior precisely with the experimental results at component as well as at structural levels.

Semi-continuous beam-to-column joints at the Millennium Tower in Vienna, Austria

  • Huber, Gerald
    • Steel and Composite Structures
    • /
    • 제1권2호
    • /
    • pp.159-170
    • /
    • 2001
  • The Millennium Tower is situated to the north of the center of Vienna. With a height of 202 m it is the highest building in Austria. Realization was improved by new methods. The tower is a typical example of mixed building technology, combining composite frames with a concrete core. Special attention has been paid to the moment connections between the slim floors and the column tubes resulting in a drastically reduced construction time and thin slabs. The semi-continuity has been considered in the design at ultimate and serviceability limit states.

Improvement, analytical verification and application of RC frame beam-column joint models

  • Fan, Guoxi;Wang, Debin;Jia, Jing
    • Earthquakes and Structures
    • /
    • 제14권3호
    • /
    • pp.273-283
    • /
    • 2018
  • Previous experimental researches indicate that reinforced concrete beam-column joints play an important role in the mechanical properties of moment resisting frame structures, so as to require proper design. In order to get better understanding of the beam-column joint performance, a rational model needs to be developed. Based on the former considerations, two typical models for calculating the shear carrying capacity of the beam-column joint including the inelastic reinforced concrete joint model and the softened strut-and-tie model are selected to be introduced and analyzed. After examining the applicability of two typical models mentioned earlier to interior beam-column joints, several adjustments are made to get better predicting of the test results. For the softened strut-and-tie model, four adjustments including modifications of the depth of the diagonal strut, the inclination angle of diagonal compression strut, the smeared stress of mild steel bars embedded in concrete, as well as the softening coefficient are made. While two adjustments for the inelastic reinforced concrete joint model including modifications of the confinement effect due to the column axial load and the correction coefficient for high concrete are made. It has been proved by test data that predicted results by the improved softened strut-and-tie model or the modified inelastic reinforced concrete joint model are consistent with the test data and conservative. Based on the test results, it is also not difficult to find that the improved beam-column joint model can be used to predict the joint carrying capacity and cracks development with sufficient accuracy.

Seismic behavior of steel and sisal fiber reinforced beam-column joint under cyclic loading

  • S.M. Kavitha;G. Venkatesan;Siva Avudaiappan;Chunwei Zhang
    • Structural Engineering and Mechanics
    • /
    • 제88권5호
    • /
    • pp.481-492
    • /
    • 2023
  • The past earthquakes revealed the importance of the design of moment-resisting reinforced concrete framed structures with ductile behavior. Due to seismic activity, failures in framed structures are widespread in beam-column joints. Hence, the joints must be designed to possess sufficient strength and stiffness. This paper investigates the effects of fibers on the ductility of hybrid fiber reinforced self-compacting concrete (HFRSCC) when subjected to seismic actions; overcoming bottlenecks at the beam-column joints has been studied by adding low modulus sisal fiber and high modulus steel fiber. For this, the optimized dose of hooked end steel fiber content (1.5%) was kept constant, and the sisal fiber content was varied at the rate of 0.1%, up to 0.3%. The seismic performance parameters, such as load-displacement behavior, ductility, energy absorption capacity, stiffness degradation, and energy dissipation capacity, were studied. The ductility factor and the cumulative energy dissipation capacity of the hybrid fiber (steel fiber, 1.5% and sisal fiber, 0.2%) added beam-column joint specimen is 100% and 121% greater than the control specimen, respectively. And also the stiffness of the hybrid fiber reinforced specimen is 100% higher than the control specimen. Thus, the test results showed that adding hybrid fibers instead of mono fibers could significantly enhance the seismic performance parameters. Therefore, the hybrid fiber reinforced concrete with 1.5% steel and 0.2% sisal fiber can be effectively used to design structures in seismic-prone areas.

Drift Control for Multistory Moment Frames under Lateral Loading

  • Grigorian, Carl E.;Grigorian, Mark
    • 국제초고층학회논문집
    • /
    • 제2권4호
    • /
    • pp.355-365
    • /
    • 2013
  • The paper reports results of recent studies on the effects of column support conditions on the lateral displacements of moment frames at incipient collapse. The article presents a number of exercises in the plastic theory of structures that lead to useful design formulae. It has been shown that Drift Shifting (DS) is caused due to differences in the stiffnesses of adjoining columns, and that changes in drift ratios are more pronounced at first level column joints in both fixed as well as pinned base frames. In well proportioned moment frames, DS in the upper levels could be minimized, even reduced to zero. It has been demonstrated that DS can be eliminated in properly designed fixed and grade beam supported (GBS) moment frames. Several examples, including symbolic P-delta effects, have been provided to demonstrate the validity and the applications of the proposed ideas to the design and drift control of moment frames. The proposed methodology is exact within the bounds of the theoretical assumptions and is well suited for preliminary design and teaching purposes.

고강도 RC 보-기둥 접합부의 비탄성 거동에 대한 슬래브의 영향 (Slab Effect on Inelastic Behaviors of High Strength RC Beam-Column Joints)

  • 장극관;김윤일;오영훈
    • 콘크리트학회지
    • /
    • 제9권2호
    • /
    • pp.167-177
    • /
    • 1997
  • 모멘트 연성골조의 접합부와 기둥은 적절한 에너지흡수 능력과 구조물의 횡붕괴를 방지하기 위하여 탄성적으로 거동해야 하며, "강한 기둥-약한 보"의 설계개념을 채택하고 있다. 접합부는 골조구조의 취약부분으로 인정되고 있지만 부재설계에서는 접합부를 구성하는 보와 기둥에 의해서 접합부의 치수가 결정되기 때문에 접합부가 부담해야 하는 하중조건과 보강방법을 결정하는데에 어려움이 있다. 또한 콘크리트의 고강도화, 경량화에 의해 부재단면은 작아지게 되고 상대적으로 철근량은 늘어나게 되므로 접합부 영역의 응력부담은 이전보다 훨씬 높아지게 되었다. 따라서 접합부의 적절한 구조성능 확보 및 시공상의 문제점을 개선하기 위하여 접합부의 설계 및 상세에 특별한 주의가 필요하다고 할 수 있다. 이에 본 연구에서는 슬래브의 기여도를 고려한 접합부의 적절한 보강방법을 제시하기 위한 기초자료로서 $\frac{2}{3}$의 실물크기로 4개의 고강도 콘크리트 보-기둥 접합부를 제작하고, 반복하중 실험을 수행하였다.실험을 수행하였다.