• Title/Summary/Keyword: molten salt process

Search Result 117, Processing Time 0.029 seconds

Corrosion Behavior of Inconel Alloys in a Hot Lithium Molten Salt under an Oxidizing Atmosphere (고온 리튬용융염계 산화분위기에서 Inconel 합금의 부식거동)

  • Cho, Soo-Hang;Seo, Chung-Seok;Yoon, Ji-Sup;Park, Seoung-Won
    • Korean Journal of Materials Research
    • /
    • v.16 no.9
    • /
    • pp.557-563
    • /
    • 2006
  • The electrolytic reduction of spent oxide fuel involves the liberation of oxygen in a molten LiCl electrolyte, which results in a chemically aggressive environment that is too corrosive for typical structural materials. So, it is essential to choose the optimum material for the process equipment handling molten salt. In this study, corrosion behavior of Inconel 713LC, MA 754, X-750 and 718 in the molten salt $LiCl-Li_2O$ under an oxidizing atmosphere was investigated at $650^{\circ}C$ for $72{\sim}216$ hours. Inconel 713LC alloy showed the highest corrosion resistance among the examined alloys. Corrosion products of Inconel 713LC were $Cr_2O_3,\;NiCr_2O_4$ and NiO, and those of Inconel MA 754 were $Cr_2O_3\;and\;Li_2Ni_8O_{10}$ while $Cr_2O_3,\;NiFe_2O_4\;and\;CrNbO_4$ were produced from Inconel 718. Also, corrosion products of Inconel X-750 were found to be $Cr_2O_3,\;NiFe_2O_4\;and\;(Cr,Nb,Ti)O_2$. Inconel 713LC showed local corrosion behavior and Inconel MA 754, 718, X-750 showed uniform corrosion behavior.

Corrosion Behavior of Ni-Base Superalloys in a Hot Molten Salt (고온 용융염계에서 Ni-Base 초합금의 부식거동)

  • Cho, Soo-Haeng;Kang, Dae-Seong;Hong, Sun-Seok;Hur, Jin-Mok;Lee, Han-Soo
    • Korean Journal of Metals and Materials
    • /
    • v.46 no.9
    • /
    • pp.577-584
    • /
    • 2008
  • The electrolytic reduction of spent oxide fuel involves the liberation of oxygen in a molten LiCl electrolyte, which results in a chemically aggressive environment that is too corrosive for typical structural materials. So, it is essential to choose the optimum material for the process equipment handling molten salt. In this study, corrosion behavior of Inconel 713LC, Inconel MA 754, Nimonic 80A and Nimonic 90 in the molten salt $LiCl-Li_2O$ under an oxidizing atmosphere was investigated at $650^{\circ}C$ for 72~216 hrs. Inconel 713LC alloy showed the highest corrosion resistance among the examined alloys. Corrosion products of Inconel 713LC were $Cr_2O_3$, $NiCr_2O_4$ and NiO, and those of Inconel MA 754 were $Cr_2O_3$ and $Li_2Ni_8O_{10}$ while $Cr_2O_3$, $LiFeO_2$, $(Cr,Ti)_2O_3$ and $Li_2Ni_8O_{10}$ were produced from Nimonic 80A. Also, corrosion products of Nimonic 90 were found to be $Cr_2O_3$, $(Cr,Ti)_2O_3$, $LiAlO_2$ and $CoCr_2O_4$. Inconel 713LC showed local corrosion behavior and Inconel MA 754, Nimonic 80A, Nimonic 90 showed uniform corrosion behavior.

DEVELOPMENT OF ELECTROREFINER WASTE SALT DISPOSAL PROCESS FOR THE EBR- II SPENT FUEL TREATMENT PROJECT

  • Simpson, Michael F.;Sachdev, Prateek
    • Nuclear Engineering and Technology
    • /
    • v.40 no.3
    • /
    • pp.175-182
    • /
    • 2008
  • The results of process development for the blending of waste salt from the electrorefining of spent fuel with zeolite-A are presented. This blending is a key step in the ceramic waste process being used for treatment of EBR-II spent fuel and is accomplished using a high-temperature v-blender. A labscale system was used with non-radioactive surrogate salts to determine optimal particle size distributions and time at temperature. An engineering-scale system was then installed in the Hot Fuel Examination Facility hot cell and used to demonstrate blending of actual electrorefiner salt with zeolite. In those tests, it was shown that the results are still favorable with actinide-loaded salt and that batch size of this v-blender could be increased to a level consistent with efficient production operations for EBR-II spent fuel treatment. One technical challenge that remains for this technology is to mitigate the problem of material retention in the v-blender due to formation of caked patches of salt/zeolite on the inner v-blender walls.

Electrochemical Behaviors of Bi3+ Ions on Inert Tungsten or on Liquid Bi Pool in the Molten LiCl-KCl Eutectic

  • Kim, Beom Kyu;Park, Byung Gi
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • v.20 no.1
    • /
    • pp.33-41
    • /
    • 2022
  • Liquid Bi pool is a candidate electrode for an electrometallurgical process in the molten LiCl-KCl eutectic to treat the spent nuclear fuels from nuclear power plants. The electrochemical behavior of Bi3+ ions and the electrode reaction on liquid Bi pool were investigated with the cyclic voltammetry in an environment with or without BiCl3 in the molten LiCl-KCl eutectic. Experimental results showed that two redox reactions of Bi3+ on inert W electrode and the shift of cathodic peak potentials of Li+ and Bi3+ on liquid Bi pool electrode in molten LiCl-KCl eutectic. It is confirmed that the redox reaction of lithium with respect to the liquid Bi pool electrode would occur in a wide range of potentials in molten LiCl-KCl eutectic. The obtained data will be used to design the electrometallurgical process for treating actinide and lanthanide from the spent nuclear fuels and to understand the electrochemical reactions of actinide and lanthanide at liquid Bi pool electrode in the molten LiCl-KCl eutectic.

Recovery of Zirconium from Spent Pickling Acid through Precipitation Using BaF2 and Electrowinning in Fluoride Molten Salt (BaF2 침전 및 불화물 용융염 전해 제련을 통한 폐 산세액 내 지르코늄 회수)

  • Han, Seul Ki;Nersisyan, Hayk H.;Lee, Young Jun;Choi, Jeong Hun;Lee, Jong Hyeon
    • Korean Journal of Materials Research
    • /
    • v.26 no.12
    • /
    • pp.681-687
    • /
    • 2016
  • Zirconium(Zr) nuclear fuel cladding tubes are made using a three-time pilgering and annealing process. In order to remove the oxidized layer and impurities on the surface of the tube, a pickling process is required. Zr is dissolved in HF and $HNO_3$ mixed acid during the process and pickling waste acid, including dissolved Zr, is totally discarded after being neutralized. In this study, the waste acid was recycled by adding $BaF_2$, which reacted with the Zr ion involved in the waste acid; $Ba_2ZrF_8$ was subsequently precipitated due to its low solubility in water. It is very difficult to extract zirconium from the as-recovered $Ba_2ZrF_8$ because its melting temperature is $1031^{\circ}C$. Hence, we tried to recover Zr using an electrowinning process with a low temperature molten salt compound that was fabricated by adding $ZrF_4$ to $Ba_2ZrF_8$ to decrease the melting point. Change of the Zr redox potential was observed using cyclic voltammetry; the voltage change of the cell was observed by polarization and chronopotentiometry. The structure of the electrodeposited Zr was analyzed and the electrodeposition characteristics were also evaluated.

A Study on the Electrolytic Reduction Mechanism of Uranium Oxide in a LiCl-Li$_2$O Molten Salt (LiCl-Li$_2$O 용융염계에서 우라늄 산화물의 전기화학적 금속전환 반응 메카니즘에 관한 연구)

  • 오승철;허진목;서중석;박성원
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • v.1 no.1
    • /
    • pp.25-39
    • /
    • 2003
  • This study proposed a new electrolytic reduction technology that is based on the integration of simultaneous uranium oxide metallization and Li$_2$O electrowinning. In this electrolytic reduction reaction, electrolytically reduced Li deposits on cathode and simultaneously reacts with uranium oxides to produce uranium metal showing more than 99% conversion. For the verification of process feasibility, the experiments to obtain basic data on the metallization of uranium oxide, investigation of reaction mechanism, the characteristics of closed recycle of Li$_2$O and mass transfer were carried out. This evolutionary electrolytic reduction technology would give benefits over the conventional Li-reduction process improving economic viability such as: avoidance of handling of chemically active Li-LiCl molten salt increase of metallization yield, and simplification of process.

  • PDF

Formation Process of Barium Ferrite Crystallites in Molten Salts and its Magnetic properties (용융염내에서의 Ba-ferrite 결정의 생성과정 및 그 자기적 특성)

  • 정지형;김창곤;윤석영;신학기;김태옥
    • Journal of the Korean Ceramic Society
    • /
    • v.38 no.11
    • /
    • pp.1015-1022
    • /
    • 2001
  • In this study, formation process of Ba-ferrite by using molten salt synthesis and its magnetic properties were investigated. Among starting materials, BaC $O_3$was only soluble in the molten salts, but other starting material such as $\delta$-FeOOH or F $e_2$ $O_3$was not soluble even at 105$0^{\circ}C$. It implies that the dissolved $Ba^{2+}$ diffused on surfaces of F $e_2$ $O_3$(or $\delta$-FeOOH), therefore, Ba-ferrtites were formed through surface reaction. However, the magnetic properties of Ba-ferrite prepared by two starting materials (F $e_2$ $O_3$and $\delta$-FeOOH) were not different. On the other hand, compared $\delta$-FeOOH with F $e_2$ $O_3$m, morphologies and dispersibility of Ba-ferrites prepared by using $\delta$-FeOOH were good and Ba-ferrites were obtaioned at lower temperature.

  • PDF

Electrochemical Behavior of Ce ion and Bi ion in LiCl-KCl Molten Salt

  • Kim, Beom-Kyu;Han, Hwa-Jeong;Park, Ji-Hye;Kim, Won-Ki;Park, Byung Gi
    • Proceedings of the Korean Radioactive Waste Society Conference
    • /
    • 2017.05a
    • /
    • pp.227-228
    • /
    • 2017
  • In this paper, electrolytic behavior of Cerium and Ce-Bi ion system was studied. The electrochemical behavior of Ce was studied in $LiCl-KCl-CeCl_3$ molten salts using electrochemical techniques Cyclic Voltammetry on tungsten electrodes at 773K. During the process of CV electrolysis, intermetallic compound were observed of Ce, Cex-Biy. Further study, in order to determine clarity of diffusion coefficient in this experiment, we will compare result of electrochemistry method and we also need to quantitative research.

  • PDF

Development of an Oxide Reduction Process for the Treatment of PWR Spent Fuel (PWR 사용후핵연료 처리를 위한 금속전환공정 개발)

  • Hur, Jin-Mok;Hong, Sun-Seok;Jeong, Sang-Mun;Lee, Han-Soo
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • v.8 no.1
    • /
    • pp.77-84
    • /
    • 2010
  • Reduction of oxides has been investigated for the volume reduction and recycling of the spent oxide fuel from commercial nuclear power plants. Various oxide reduction methods were proposed and KAERI (Korea Atomic Energy Research Institute) is currently developing an electrochemical reduction process using a LiCl-$Li_2O$ molten salt as a reaction medium. The electrochemical reduction process, the front end of the pyroprocessing, can connect the PWR (Pressurized Water Reactor) oxide fuel cycle to a metal fuel cycle of the sodium cooled fast reactor. This paper summarizes KAERI efforts on the development, improvement, and scale-up of the oxide reduction process.