• Title/Summary/Keyword: molecular modification

Search Result 557, Processing Time 0.034 seconds

Fluorescent Compounds Having the Spaced and Integrated Type Receptors

  • Choi, Chang-Shik
    • Rapid Communication in Photoscience
    • /
    • v.5 no.1
    • /
    • pp.1-7
    • /
    • 2016
  • Fluorescent receptors have gained much attention because of their usefulness in analysis and clarification of the roles of biomolecules in living systems. Molecular structures of the integrated type including that the receptor itself is fluorescent, and play an important role in having the functionality or selectivity of the fluorescent compounds. These spaced type fluorescent receptors are required to have special molecular design in order to transmit the information of molecular recognition to the fluorescent unit through the spacer unit. Compared with the spaced type fluorescent receptors, number of the integrated type receptors is limited due to the difficult molecular design and synthesis. Modification of alteration of the fluorophore frequently caused deterioration of the fluorescent property. Various spaced type and integrated type fluorescent receptors including switch on-off receptors are introduced in this article.

The effect of Several Pulp properties and freeness treated with different sized cellulase (섬유소 분해효소의 단백질 분자량이 다른 조합처리가 펄프의 고해도 변화 및 습지 보수도에 미치는 영향)

  • 김병헌;양이석
    • Journal of the Korean Graphic Arts Communication Society
    • /
    • v.19 no.1
    • /
    • pp.64-74
    • /
    • 2001
  • This study is to find the effect of the molecular weight distribution of components on the freeness and physical properties of paper by observing the change of properties according the modification of fibers by using production technology and process technology together to develop additives which can effectively control according to the purpose of paper-making process and by combining low molecular weight cellulase (below MW 20,000; CMC activity 400 unit) with different enzyme's molecular weight and activity and high molecular weight cellulase(MW 20,000∼80,000;CMC activity 90,000 unit) and then process them in Sw-BKP(Softwood Bleached Kraft Pulp) and Hw-BKP(Hardwood Bleached Kraft Pulp) and Cotton Linter Pulp and OCC(Old Corrugated Container) with different properties of pore of surface of fibers respectively, since it is judged that making the appropriate composition ratio of components is necessary in consideration of the properties of fibers and paper-making process.

  • PDF

Oxidative modification of ferritin induced by methylglyoxal

  • An, Sung-Ho;Lee, Myeong-Seon;Kang, Jung-Hoon
    • BMB Reports
    • /
    • v.45 no.3
    • /
    • pp.147-152
    • /
    • 2012
  • Methylglyoxal (MG) was identified as an intermediate in non-enzymatic glycation and increased levels were reported in patients with diabetes. In this study, we evaluated the effects of MG on the modification of ferritin. When ferritin was incubated with MG, covalent crosslinking of the protein increased in a time- and MG dose-dependent manner. Reactive oxygen species (ROS) scavengers, $N-acetyl-_L-cysteine$ and thiourea suppressed the MG-mediated ferritin modification. The formation of dityrosine was observed in MG-mediated ferritin aggregates and ROS scavengers inhibited the formation of dityrosine. During the reaction between ferritin and MG, the generation of ROS was increased as a function of incubation time. These results suggest that ROS may play a role in the modification of ferritin by MG. The reaction between ferritin and MG led to the release of iron ions from the protein. Ferritin exposure to MG resulted in a loss of arginine, histidine and lysine residues. It was assumed that oxidative damage to ferritin caused by MG may induce an increase in the iron content in cells, which is deleterious to cells. This mechanism, in part, may provide an explanation or the deterioration of organs under diabetic conditions.

Oxidative modification of ferritin induced by hydrogen peroxide

  • Yoon, Jung-Hwan;An, Sung-Ho;Kyeong, Inn-Goo;Lee, Myeong-Seon;Kwon, Sang-Chul;Kang, Jung-Hoon
    • BMB Reports
    • /
    • v.44 no.3
    • /
    • pp.165-169
    • /
    • 2011
  • Excess free iron generates oxidative stress that may contribute to the pathogenesis of various causes of neurodegenerative diseases. In this study, we assessed the modification of ferritin induced by $H_2O_2$. When ferritin was incubated with $H_2O_2$, the degradation of ferritin L-chain increased with the $H_2O_2$ concentration whereas ferritin H-chain was remained. Free radical scavengers, azide, thiourea, and N-acetyl-$_L$-cysteine suppressed the $H_2O_2$-mediated ferritin modification. The iron specific chelator, deferoxamine, effectively prevented $H_2O_2$-mediated ferritin degradation in modified ferritin. The release of iron ions from ferritin was increased in $H_2O_2$ concentration-dependent manner. The present results suggest that free radicals may play a role in the modification and iron releasing of ferritin by $H_2O_2$. It is assumed that oxidative damage of ferritin by $H_2O_2$ may induce the increase of iron content in cells and subsequently lead to the deleterious condition.

Structural Identification of Modified Amino Acids on the Interface between EPO and Its Receptor from EPO BRP, Human Recombinant Erythropoietin by LC/MS Analysis

  • Song, Kwang-Eun;Byeon, Jaehee;Moon, Dae-Bong;Kim, Hyong-Ha;Choi, Yoo-Joo;Suh, Jung-Keun
    • Molecules and Cells
    • /
    • v.37 no.11
    • /
    • pp.819-826
    • /
    • 2014
  • Protein modifications of recombinant pharmaceuticals have been observed both in vitro and in vivo. These modifications may result in lower efficacy, as well as bioavailability changes and antigenicity among the protein pharmaceuticals. Therefore, the contents of modification should be monitored for the quality and efficacy of protein pharmaceuticals. The interface of EPO and its receptor was visualized, and potential amino acids interacting on the interface were also listed. Two different types of modifications on the interface were identified in the preparation of rHu-EPO BRP. A UPLC/Q-TOF MS method was used to evaluate the modification at those variants. The modification of the oxidized variant was localized on the Met54 and the deamidated variants were localized on the Asn47 and Asn147. The extent of oxidation at Met54 was 3.0% and those of deamidation at Asn47 and Asn147 were 2.9% and 4.8%, respectively.

Glycosylation of Flavonoids with E. coli Expressing Glycosyltransferase from Xanthomonas campestris

  • Kim, Jeong-Ho;Kim, Bong-Gyu;Kim, Jae-Ah;Park, Young-Hee;Lee, Yoon-Jung;Lim, Yoong-Ho;Ahn, Joong-Hoon
    • Journal of Microbiology and Biotechnology
    • /
    • v.17 no.3
    • /
    • pp.539-542
    • /
    • 2007
  • Glycosyltransferase family 1 (UOT) uses small chemicals including phenolics, antibiotics, and alkaloids as substrates to have an influence in biological activities. A glycosyltransferase (XcGT-2) from Xanthomonas campestris was cloned and consisted of a 1,257 bp open reading frame encoding a 45.5 kDa protein. In order to use this for the modification of phenolic compounds, XcGT-2 was expressed in Escherichia coli as a glutathione S-transferase fusion protein. With the E. coli transformant expressing XcGT-2, biotransformation of flavonoids was carried out. Flavonoids having a double bond between carbons 2 and 3, and hydroxyl groups at both C-3' and C-4', were glycosylated and the glycosylation position was determined to be at the hydroxyl group of C-3', using nuclear magnetic resonance spectroscopy. These results showed that XcGT-2 regiospecifically transferred a glucose molecule to the 3'-hydroxyl group of flavonoids containing both 3' and 4'-hydroxyl groups.

High-concentration Epigallocatechin Gallate Treatment Causes Endoplasmic Reticulum Stress-mediated Cell Death in HepG2 Cells

  • Ahn, Joon-Ik;Jeong, Kyoung-Ji;Ko, Moon-Jeong;Shin, Hee-Jung;Chung, Hye-Joo;Jeong, Ho-Sang
    • Genomics & Informatics
    • /
    • v.7 no.2
    • /
    • pp.97-106
    • /
    • 2009
  • Epigallocatechin gallate (EGCG), a well-known antioxidant molecule, has been reported to cause hepatotoxicity when used in excess. However, the mechanism underlying EGCG-induced hepatotoxicity is still unclear. To better understand the mode of action of EGCG-induced hepatotoxicity, we examined the effect of EGCG on human hepatic gene expression in HepG2 cells using microarrays. Analyses of microarray data revealed more than 1300 differentially expressed genes with a variety of biological processes. Upregulated genes showed a primary involvement with protein-related biological processes, such as protein synthesis, protein modification, and protein trafficking, while downregulated genes demonstrated a strong association with lipid transport. Genes involved in cellular stress responses were highly upregulated by EGCG treatment, in particular genes involved in endoplasmic reticulum (ER) stress, such as GADD153, GADD34, and ATF3. In addition, changes in genes responsible for cholesterol synthesis and lipid transport were also observed, which explains the high accumulation of EGCG-induced lipids. We also identified other regulatory genes that might aid in clarifying the molecular mechanism underlying EGCG-induced hepatotoxicity.

Anti-inflammatory Action of Calorie Restriction for Life-Prolongation: A Possible Mechanism

  • Chung, Hae-Young
    • Proceedings of the PSK Conference
    • /
    • 2002.10a
    • /
    • pp.173-174
    • /
    • 2002
  • Oxidative modification of cellular structures and functions by redox imbalance is the basis of the current oxidative stress hypothesis of aging. The experimental support for this hypothsis has been generated from recent molecular probing on the interrelation between the age-related functional impairments and the pathogenesis. (omitted)

  • PDF