• Title/Summary/Keyword: molecular interactions

Search Result 927, Processing Time 0.027 seconds

Use of DNA-Specific Anthraquinone Dyes to Directly Reveal Cytoplasmic and Nuclear Boundaries in Live and Fixed Cells

  • Edward, Roy
    • Molecules and Cells
    • /
    • 제27권4호
    • /
    • pp.391-396
    • /
    • 2009
  • Image-based, high-content screening assays demand solutions for image segmentation and cellular compartment encoding to track critical events - for example those reported by GFP fusions within mitosis, signalling pathways and protein translocations. To meet this need, a series of nuclear/cytoplasmic discriminating probes have been developed: DRAQ5$^{TM}$ and CyTRAK Orange$^{TM}$. These are spectrally compatible with GFP reporters offering new solutions in imaging and cytometry. At their most fundamental they provide a convenient fluorescent emission signature which is spectrally separated from the commonly used reporter proteins (e.g. eGFP, YFP, mRFP) and fluorescent tags such as Alexafluor 488, fluorescein and Cy2. Additionally, they do not excite in the UV and thus avoid the complications of compound UV-autofluorescence in drug discovery whilst limiting the impact of background sample autofluorescence. They provide a convenient means of stoichiometrically labelling cell nuclei in live cells without the aid of DMSO and can equally be used for fixed cells. Further developments have permitted the simultaneous and differential labelling of both nuclear and cytoplasmic compartments in live and fixed cells to clearly render the precise location of cell boundaries which may be beneficial for quantitative expression measurements, cell-cell interactions and most recently compound in vitro toxicology testing.

The Expanding Significance of Inositol Polyphosphate Multikinase as a Signaling Hub

  • Kim, Eunha;Ahn, Hyoungjoon;Kim, Min Gyu;Lee, Haein;Kim, Seyun
    • Molecules and Cells
    • /
    • 제40권5호
    • /
    • pp.315-321
    • /
    • 2017
  • The inositol polyphosphates are a group of multifunctional signaling metabolites whose synthesis is catalyzed by a family of inositol kinases that are evolutionarily conserved from yeast to humans. Inositol polyphosphate multikinase (IPMK) was first identified as a subunit of the arginine-responsive transcription complex in budding yeast. In addition to its role in the production of inositol tetrakis- and pentakisphosphates ($IP_4$ and $IP_5$), IPMK also exhibits phosphatidylinositol 3-kinase (PI3-kinase) activity. Through its PI3-kinase activity, IPMK activates Akt/PKB and its downstream signaling pathways. IPMK also regulates several protein targets non-catalytically via protein-protein interactions. These non-catalytic targets include cytosolic signaling factors and transcription factors in the nucleus. In this review, we highlight the many known functions of mammalian IPMK in controlling cellular signaling networks and discuss future challenges related to clarifying the unknown roles IPMK plays in physiology and disease.

A Clue for Prebiotic Era: Cross-Catalytic Replication of an RNA Ligase Ribozyme

  • Kim Dong-Eun;Joyce Gerald F.
    • 한국생명과학회:학술대회논문집
    • /
    • 한국생명과학회 2004년도 국제학술심포지움
    • /
    • pp.22-26
    • /
    • 2004
  • A self-replicating RNA ligase ribozyme was converted to a cross-catalytic format whereby two ribozymes direct each other's synthesis from a total of four component substrates. Each ribozyme binds two RNA substrates and catalyzes their ligation to form the opposing ribozyme. The two ribozymes are not perfectly complementary, as is the case for replicating nucleic acid genomes in biology. Rather, the ribozymes contain both template elements, which are complementary, and catalytic elements, which are identical. The specificity of the template interactions allows the cross-catalytic pathway to dominate over all other reaction pathways. In the presence of $2{\mu}M$ each of the corresponding substrates, one ribozyme catalyzes the synthesis of the second ribozyme with an initial rate of $6.8{\times}10^{-3}\;min^{-1}$, while the second ribozyme catalyzes the synthesis of the first with an initial rate of $2.9{\times}10^{-3}min{-1}$. As the concentration of the two ribozymes increases, the rate of formation of additional ribozyme molecules increases, consistent with the overall autocatalytic behavior of the reaction system. Here, I present results that possibly demonstrate a clue for a self-replicating molecule by showing an RNA ligase ribozyme, which is reminiscent of 'Prebiotic Era'.

  • PDF

Binding of Methylene Blue to two types of water soluble polymer and its removal by polyelectrolyte enhanced ultrafiltration

  • Mansour, Nadia Cheickh;Ouni, Hedia;Hafiane, Amor
    • Membrane and Water Treatment
    • /
    • 제9권2호
    • /
    • pp.87-94
    • /
    • 2018
  • The interactions of water soluble polymers with dye are studied by ultrafiltration using a molecular weight cut off of 10 KDa regenerated cellulose ultrafiltration membrane. Two water-soluble polymers, namely Poly (Sodium-4 Styrenesulfonate) (PSS) and Poly (Vinyl Alcohol) (PVA) were selected for this study. The effects of process parameters, such as, polyelectrolyte concentrations, transmembrane pressure, ionic strength and pH of solution on dye retention and permeation flux were examined. PSS enhanced ultrafiltration achieved dye retention as high as 99% as a result of complexation between polyanion containing aromatic groups and cationic dye. This result was confirmed by the red shift. The retention of dye decreases as the salt concentration increases, a high retention was obtained at pH above 4. However, in case of PVA, relatively low retention (50%) was observed. Ionic strength and pH has no significant effect on the removal of MB. The permeate flux depended slightly on polyelectrolytes concentrations, transmembrane pressure, salt concentration and pH.

Speckle Removal of SAR Imagery Using a Point-Jacobian Iteration MAP Estimation

  • Lee, Sang-Hoon
    • 대한원격탐사학회지
    • /
    • 제23권1호
    • /
    • pp.33-42
    • /
    • 2007
  • In this paper, an iterative MAP approach using a Bayesian model based on the lognormal distribution for image intensity and a GRF for image texture is proposed for despeckling the SAR images that are corrupted by multiplicative speckle noise. When the image intensity is logarithmically transformed, the speckle noise is approximately Gaussian additive noise, and it tends to a normal probability much faster than the intensity distribution. MRFs have been used to model spatially correlated and signal-dependent phenomena for SAR speckled images. The MRF is incorporated into digital image analysis by viewing pixel types as slates of molecules in a lattice-like physical system defined on a GRF Because of the MRF-SRF equivalence, the assignment of an energy function to the physical system determines its Gibbs measure, which is used to model molecular interactions. The proposed Point-Jacobian Iterative MAP estimation method was first evaluated using simulation data generated by the Monte Carlo method. The methodology was then applied to data acquired by the ESA's ERS satellite on Nonsan area of Korean Peninsula. In the extensive experiments of this study, The proposed method demonstrated the capability to relax speckle noise and estimate noise-free intensity.

Tertiary Structure of Ganglioside $G_{A1}$ as Determined by NMR Spectroscopy

  • 이경익;이상원;전길자;김양미
    • Bulletin of the Korean Chemical Society
    • /
    • 제19권5호
    • /
    • pp.569-575
    • /
    • 1998
  • Investigation of the structure of the gangliosides has proven to be very important in the understanding of their biological roles. We have determined the tertiary structure of asialoganglioside GM1 $(GA_1)$ using NMR spectroscopy and distance geometry calculations. All of the structures are very similar except the glycosidic torsion angles in the ring IV and ring III linkages. There are two low-energy structures for GA1, G1 and G2. G1 differs from G2 only in the IV-III glycosidic linkages and the orientation of acetamido group in ring III. There is a stable intramolecular hydrogen bond between the third hydroxyl group in ring I and the ring oxygen atom in ring II. Also, there may be a weak hydrogen bond between the second hydroxyl group in ring IV and the acetamido group in ring III. Small coupling constants of $^3J_{IH3,IOH3}\; and\; ^3J_{IVH2,IVOH2}$ support this result. Overall structural features of $(GA_1)$ are very similar to those of $(GM_1)$. It implicates that specificities of the sugar moieties in GM1 are caused not by their tertiary foldings, but mainly by the electrostatic interactions between the polar sialic acid and its receptors. Since it is evident that $(GA_1)$ is more hydrophobic than $(GA_1)$, a receptor with a hydrophobic binding site can recognize the $(GA_1)$ better than $(GA_1)$. Studies on the conformational properties of $(GA_1)$ may lead to a better understanding of the molecular basis of its functions.

Alyssin and Iberin in Cruciferous Vegetables Exert Anticancer Activity in HepG2 by Increasing Intracellular Reactive Oxygen Species and Tubulin Depolymerization

  • Pocasap, Piman;Weerapreeyakul, Natthida;Thumanu, Kanjana
    • Biomolecules & Therapeutics
    • /
    • 제27권6호
    • /
    • pp.540-552
    • /
    • 2019
  • To determine the chemopreventive potential of alyssin and iberin, the in vitro anticancer activities and molecular targets of isothiocyanates (ITCs) were measured and compared to sulforaphane in hepatocellular carcinoma cell HepG2. The SR-FTIR spectra observed a similar pattern vis-a-vis the biomolecular alteration amongst the ITCs-treated cells suggesting a similar mode of action. All of the ITCs in this study cause cancer cell death through both apoptosis and necrosis in concentration dependent manner ($20-80{\mu}M$). We found no interactions of any of the ITCs studied with DNA. Notwithstanding, all of the ITCs studied increased intracellular reactive oxygen species (ROS) and suppressed tubulin polymerization, which led to cell-cycle arrest in the S and $G_2/M$ phase. Alyssin possessed the most potent anticancer ability; possibly due to its ability to increase intracellular ROS rather than tubulin depolymerization. Nevertheless, the structural influence of alkyl chain length on anticancer capabilities of ITCs remains inconclusive. The results of this study indicate an optional, potent ITC (viz., alyssin) because of its underlying mechanisms against hepatic cancer. As a consequence, further selection and development of effective chemotherapeutic ITCs is recommended.

아다만틸을 기반한 N-아릴아미드 신규 안드로겐 수용체 길항제 (Adamantyl-based N-arylamide as a Novel Series of Androgen Receptor Antagonists)

  • 우병영;신송석;홍용덕;주영협;정연수;이범진;김수동
    • 대한화장품학회지
    • /
    • 제46권1호
    • /
    • pp.43-47
    • /
    • 2020
  • 안드로겐 수용체 길항제로서 N-아릴아미드의 신규한 아다만틸 유도체들을 합성하고 항안드로겐 활성을 평가 하였다. 아다만틸 유도체를 함유하는 N-아릴아미드는 아다만틸 치환체가 없는 유도체보다 더 높은 활성을 가졌다. 아다만틸의 공간부피 및 방향족 고리에 전자밀도 상승효과를 주는 pendant 작용기들이 강력한 길항작용에 결정적인 영향을 미쳤다. 리간드와 수용체 사이의 상호 작용을 설명하기 위해 분자 모델링 연구를 수행 하였다.

Gastrulation : Current Concepts and Implications for Spinal Malformations

  • Thompson, Dominic Nolan Paul
    • Journal of Korean Neurosurgical Society
    • /
    • 제64권3호
    • /
    • pp.329-339
    • /
    • 2021
  • It has been recognised for over a century that the events of gastrulation are fundamental in determining, not only the development of the neuraxis but the organisation of the entire primitive embryo. Until recently our understanding of gastrulation was based on detailed histological analysis in animal models and relatively rare human tissue preparations from aborted fetuses. Such studies resulted in a model of gastrulation that neurosurgeons have subsequently used as a means of trying to explain some of the congenital anomalies of caudal spinal cord and vertebral development that present in paediatric neurosurgical practice. Recent advances in developmental biology, in particular cellular biology and molecular genetics have offered new insights into very early development. Understanding the processes that underlie cellular interactions, gene expression and activation/inhibition of signalling pathways has changed the way embryologists view gastrulation and this has led to a shift in emphasis from the 'descriptive and morphological' to the 'mechanistic and functional'. Unfortunately, thus far it has proved difficult to translate this improved knowledge of normal development, typically derived from non-human models, into an understanding of the mechanisms underlying human malformations such as the spinal dysraphisms and anomalies of caudal development. A paediatric neurosurgeons perspective of current concepts in gastrulation is presented along with a critical review of the current hypotheses of human malformations that have been attributed to disorders of this stage of embryogenesis.

고압균질처리가 전분필름의 물성에 미치는 영향 (Effects of High Pressure Homogenization on Physicochemical Properties of Starch Films)

  • 강은정;이재권
    • 산업식품공학
    • /
    • 제15권1호
    • /
    • pp.70-74
    • /
    • 2011
  • 전분필름의 물성에 미치는 고압균질 처리의 영향을 검토한 결과, 고압균질처리 옥수수전분필름은 산화전분필름과 유사한 투명도를 가지며, 용해도와 산소투과억제력의 증가와 함께 인장강도가 다소 높아지는 것을 확인하였다. 이러한 고압균질처리 옥수수전분필름의 물성변화는 고압균질기의 고압과 전단력에 의해 호화전분입자가 완전히 소실되고 전분의 용해도 증가와 보다 균일한 분산상이 형성되기 때문으로 판단되었다. 일반적인 호화과정을 통해 형성되는 전분필름의 구조는 연속상의 아밀로오스에 팽윤된 접분입자가 분산되어 있는 network 형태에서 형성된다. 반면 고압균질처리의 경우, 호화전분입자의 붕괴로 아밀로펙틴이 연속상을 이루고 여기에 아밀로오스가 분산상으로 존재하는 새로운 분산계(dispersed system)가 형성되어, 기존 호화 방법으로 제조한 필름과 다른 물성을 나타내는 것으로 판단되었다.