• Title/Summary/Keyword: molecular interaction

Search Result 1,519, Processing Time 0.033 seconds

Effects of CsCl on the Early Root Growth of Maize (Zea mays) (옥수수(Zea mays) 뿌리의 초기 생장에 미치는 CsCl의 영향)

  • Park, Woong-June
    • Journal of Life Science
    • /
    • v.20 no.2
    • /
    • pp.298-303
    • /
    • 2010
  • In this work, the effects of $Cs^+$ on root growth of 2-day-old maize seedlings were scrutinized. CsCl (5 mM - 30 mM) decreased the fresh weight of the primary root and of the shoot above the coleoptilar node. The elongation growth of the primary root was also inhibited by CsCl. The CsCl-inhibited growth was partially restored by 60 mM KCl. Lineweaver-Burk plot of the reaction in the presence and absence of 60 mM KCl displayed competitive interaction of CsCl (at higher than 10 mM). However, the Reversal of the inhibition by 60 mM KCl did not follow the competitive relationship with 5 mM CsCl, indicating the presence of differential mechanisms of $K^+$ influence depending on the concentration of CsCl. The differential effects of CsCl dependent on the concentrations were also observed in the CsCl-evoked radial expansion of the subapical region of the root. In spite of the decrease in length of the root, shrinkage of the root apical meristem was not observed. CsCl above 10 mM induced the expression of ZmKUP1, indicating functional deficiency of $K^+$ due to competition with Cs. However, the expression of ZmKUP1 by 5 mM CsCl was unclear. Conclusively, exogenously applied $Cs^+$ decreased root elongation and fresh weight and caused radial expansion of the subapical region of the primary root in 2-day-old maize seedlings by complex mechanisms including competitive and noncompetitive interactions with $K^+$. Because the shrinkage of the root apical meristem was not observed, it is concluded that the effects of CsCl on maize root growth was mainly related to cell expansion.

Effects of Sasa quelpaertensis Extract on mRNA and microRNA Profiles of SNU-16 Human Gastric Cancer Cells (SNU-16 위암 세포의 mRNA 및 miRNA 프로파일에 미치는 제주조릿대 추출물의 영향)

  • Jang, Mi Gyeong;Ko, Hee Chul;Kim, Se-Jae
    • Journal of Life Science
    • /
    • v.30 no.6
    • /
    • pp.501-512
    • /
    • 2020
  • Sasa quelpaertensis Nakai leaf has been used as a folk medicine for the treatment of gastric ulcer, dipsosis, and hematemesis based on its anti-inflammatory, antipyretic, and diuretic characteristics. We have previously reported the procedure for deriving a phytochemical-rich extract (PRE) from S. quelpaertensis and how PRE and its ethyl acetate fraction (EPRE) exhibits an anticancer effect by inducing apoptosis in various gastric cancer cells. To explore the molecular targets involved in this apoptosis, we investigated the mRNA and microRNA profiles of EPRE-treated SNU-16 human gastric cancer cells. In total, 2,875 differentially expressed genes were identified by RNA sequencing, and gene ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) analyses indicated that the EPRE-modulated genes are associated with apoptosis, mitogen-activated protein kinase, inflammatory response, tumor necrosis factor signaling, and cancer pathways. Subsequently, protein-protein interaction network analysis confirmed interactions among genes associated with cell death and apoptosis, and 27 differentially expressed microRNAs were identified by further sequencing. Here, GO and KEGG pathway analysis revealed that EPRE modified the expression of microRNAs associated with the cell cycle and cell death, as well as signaling of tropomyosin-receptor-kinase receptor, transforming growth factor-b, nuclear factor kB, and cancer pathways. Taken together, these results provide insight into the mechanisms underlying the anticancer effect of EPRE.

Regulation of Abiotic Stress Response by Alternative Splicing in Plants (식물에서 선택적 스플라이싱에 의한 스트레스 반응 조절)

  • Seok, Hye-Yeon;Lee, Sun-Young;Moon, Yong-Hwan
    • Journal of Life Science
    • /
    • v.30 no.6
    • /
    • pp.570-579
    • /
    • 2020
  • Pre-mRNA splicing is a crucial step for the expression of information encoded in eukaryotic genomes. Alternative splicing occurs when splice sites are differentially recognized and more than one transcript and potentially multiple proteins are generated from the same pre-mRNA. The decision on which splice sites are selected under particular cellular conditions is determined by the interaction of proteins, globally designated as splicing factors, that guide spliceosomal components, and thereby the spliceosome, to their respective splice sites. Abiotic stresses such as heat, cold, salt, drought, and hypoxia markedly alter alternative splicing patterns in plants, and these splicing events implement changes in gene expression for adaptive responses to adverse environments. Alteration of the expression or activity of splicing factors results in alternative splicing under cold, heat, salt, or drought conditions, and alternatively spliced isoforms respond distinctly in several aspects such as expression in different tissues or degradation via nonsense-mediated decay. Spliced isoforms may vary in their subcellular localization or have different biological functions under stress conditions. Despite numerous studies, functional analyses of alternative splicing have been limited to particular abiotic stresses; the molecular mechanism of alternative splicing in abiotic stress response remains uncovered which suggests that further studies are needed in this area.

Expression of the Floral Repressor miRNA156 is Positively Regulated by the AGAMOUS-like Proteins AGL15 and AGL18

  • Serivichyaswat, Phanu;Ryu, Hak-Seung;Kim, Wanhui;Kim, Soonkap;Chung, Kyung Sook;Kim, Jae Joon;Ahn, Ji Hoon
    • Molecules and Cells
    • /
    • v.38 no.3
    • /
    • pp.259-266
    • /
    • 2015
  • The regulation of flowering time has crucial implications for plant fitness. MicroRNA156 (miR156) represses the floral transition in Arabidopsis thaliana, but the mechanisms regulating its transcription remain unclear. Here, we show that two AGAMOUS-like proteins, AGL15 and AGL18, act as positive regulators of the expression of MIR156. Small RNA northern blot analysis revealed a significant decrease in the levels of mature miR156 in agl15 agl18 double mutants, but not in the single mutants, suggesting that AGL15 and AGL18 co-regulate miR156 expression. Histochemical analysis further indicated that the double mutants showed a reduction in MIR156 promoter strength. The double mutants also showed reduced abundance of pri-miR156a and pri-miR156c, two of the primary transcripts from MIR156 genes. Electrophoretic mobility shift assays demonstrated that AGL15 directly associated with the CArG motifs in the MIR156a/c promoters. AGL18 did not show binding affinity to the CArG motifs, but pull-down and yeast two-hybrid assays showed that AGL18 forms a heterodimer with AGL15. GFP reporter assays and bimolecular fluorescence complementation (BiFC) showed that AGL15 and AGL18 co-localize in the nucleus and confirmed their in vivo interaction. Overexpression of miR156 did not affect the levels of AGL15 and AGL18 transcripts. Taking these data together, we present a model for the transcriptional regulation of MIR156. In this model, AGL15 and AGL18 may form a complex along with other proteins, and bind to the CArG motifs of the promoters of MIR156 to activate the MIR156 expression.

Computational Chemistry Study of CO2 Fixation and Cyclic Carbonate Synthesis Using Various Catalysts (촉매를 이용한 이산화탄소 고정화 및 고리형 카보네이트 합성반응에 대한 계산화학적 해석)

  • An, Hye Young;Kim, Min-Kyung;Jeong, Hui Cheol;Eom, Ki Heon;Won, Yong Sun
    • Clean Technology
    • /
    • v.22 no.1
    • /
    • pp.35-44
    • /
    • 2016
  • In this study, a computational chemistry methodology called as molecular modeling was been applied to explain several experiment results mechanistically. The reaction chosen for this study was to remove carbon dioxide, known as a primary greenhouse gas, by an epoxide via the carbon dioxide fixation to produce carbonates. This reaction inherently needs the use of catalysts because it has a significantly high activation barrier (55~59 kcal/mol). Among various types of catalysts, we studied in zeolitic imidazolate framework 90 (ZIF-90)/ionic liquid immobilized ZIF-90 (IL-ZIF-90), polystyrene-supported quaternized ammonium salt, KI/KI-glycine, and dimethylethanolamine (DMEA). First, probable reaction pathways were proposed based on calculated energetics by computational chemistry. The energetics was then used for the thermodynamic interpretation on the activity of catalysts. In the case of ZIF-90/IL-ZIF-90 and KI/KI-glycine, IL-ZIF-90 and KI-glycine showed better yields compared to their counterparts. The calculation proposed interesting results that it is not from the lowering of activation energy but from the unstable intermediates of ZIF-90 and KI-glycine. For DMEA, the calculated activation energy was ~42 kcal/mol, much lower than that of the non-catalytic reaction. A possible reaction pathway was located to confirm the interaction between −NH group from ammonium and oxygen from epoxide for polystyrene-supported quaternized ammonium salt.

Targeting Analysis of Lumenal Proteins of Chloroplast of Wheat using Proteomic Techniques

  • Kamal, Abu Hena Mostafa;Kim, Da-Eun;Oh, Myoung-Won;Chung, Keun-Yook;Cho, Yong-Gu;Kim, Hong-Sig;Song, Beom-Heon;Lee, Chul-Won;Uozumi, Nobuyuki;Choi, Jong-Soon;Cho, Kun;Woo, Sun-Hee
    • Proceedings of the Plant Resources Society of Korea Conference
    • /
    • 2010.05a
    • /
    • pp.14-14
    • /
    • 2010
  • Plastid proteomics are essential organelles present in virtually all cells in plants and green algae. Plastids are responsible for the synthesis and storage of key molecules required for the basic architecture and functions of plant cells. The proteome of plastid, and in particular of chloroplast, have received significant amounts of attention in recent years. Various fractionation and mass spectrometry (MS) techniques have been applied to catalogue the chloroplast proteome and its sub-organelles compartments. To better understanding the function of the lumenal sub-organelles within the thylakoid network, we have carried out a systematical analysis and identification of the lumenal proteins in the thylakoid of wheat by using Tricine-SDS-PAGE, and LTQ-ESI-FTICR mass spectrometry followed by SWISS-PROT database searching. We isolation and fractionation these membrane from fully developed wheat leaves using a combination of differential and gradient centrifugation couple to high speed ultra-centrifuge. After collecting all proteins to eliminate possible same proteins, we estimated that there are 407 different proteins including chloroplast, chloroplast stroma, lumenal, and thylakoid membrane proteins excluding 20 proteins, which were identified in nucleus, cytoplasm and mitochondria. A combination of these three programs (PSORT, TargetP, TMHMM, and TOPPRED) was found to provide a useful tool for evaluating chloroplast localization, transit peptide, transmembranes, and also could reveal possible alternative processing sites and dual targeting. Finally, we report also sub-cellular location specific protein interaction network using Cytoscape software, which provides further insight into the biochemical pathways of photosynthesis. The present work helps understanding photosynthesis process in wheat at the molecular level and provides a new overview of the biochemical machinery of the thylakoid in wheat.

  • PDF

Molecular characterization and docking dynamics simulation prediction of cytosolic OASTL switch cysteine and mimosine expression in Leucaena leucocephala

  • Harun-Ur-Rashid, Md.;Masakazu, Fukuta;Amzad Hossain, Md.;Oku, Hirosuke;Iwasaki, Hironori;Oogai, Shigeki;Anai, Toyoaki
    • Proceedings of the Korean Society of Crop Science Conference
    • /
    • 2017.06a
    • /
    • pp.36-36
    • /
    • 2017
  • Out of twenty common protein amino acids, there are many kinds of non protein amino acids (NPAAs) that exist as secondary metabolites and exert ecological functions in plants. Mimosine (Mim), one of those NPAAs derived from L. leucocephala acts as an iron chelator and reversely block mammalian cell cycle at G1/S phases. Cysteine (Cys) is decisive for protein and glutathione that acts as an indispensable sulfur grantor for methionine and many other sulfur-containing secondary products. Cys biosynthesis includes consecutive two steps using two enzymes-serine acetyl transferase (SAT) and O-acetylserine (thiol)lyase (OASTL) and appeared in plant cytosol, chloroplast, and mitochondria. In the first step, the acetylation of the ${\beta}$-hydroxyl of L-serine by acetyl-CoA in the existence of SAT and finally, OASTL triggers ${\alpha}$, ${\beta}$-elimination of acetate from OAS and bind $H_2S$ to catalyze the synthesis of Cys. Mimosine synthase, one of the isozymes of the OASTLs, is able to synthesize Mim with 3-hydroxy-4-pyridone (3H4P) instead of $H_2S$ for Cys in the last step. Thus, the aim of this study was to clone and characterize the cytosolic (Cy) OASTL gene from L. leucocephala, express the recombinant OASTL in Escherichia coli, purify it, do enzyme kinetic analysis, perform docking dynamics simulation analysis between the receptor and the ligands and compare its performance between Cys and Mim synthesis. Cy-OASTL was obtained through both directional degenerate primers corresponding to conserved amino acid region among plant Cys synthase family and the purified protein was 34.3KDa. After cleaving the GST-tag, Cy-OASTL was observed to form mimosine with 3H4P and OAS. The optimum Cys and Mim reaction pH and temperature were 7.5 and $40^{\circ}C$, and 8.0 and $35^{\circ}C$ respectively. Michaelis constant (Km) values of OAS from Cys were higher than the OAS from Mim. Inter fragment interaction energy (IFIE) of substrate OAS-Cy-OASTL complex model showed that Lys, Thr81, Thr77 and Gln150 demonstrated higher attraction force for Cys but 3H4P-mimosine synthase-OAS intermediate complex showed that Gly230, Tyr227, Ala231, Gly228 and Gly232 might provide higher attraction energy for the Mim. It may be concluded that Cy-OASTL demonstrates a dual role in biosynthesis both Cys and Mim and extending the knowledge on the biochemical regulatory mechanism of mimosine and cysteine.

  • PDF

Characteristics and Partial Purification of a Bacteriocin Produced by Pediococcus damnosus JNU 534 (Pediococcus damnosus JNU 534가 생산하는 박테리오신의 특성 및 정제)

  • Lee, Jae-Won;Han, Su-Min;Yun, Bo-Hyun;Oh, Se-Jong
    • Food Science of Animal Resources
    • /
    • v.31 no.6
    • /
    • pp.952-959
    • /
    • 2011
  • A new bacteriocin-producing lactic acid bacteria (LAB) which has been isolated from kimchi was identified as Pediococcus damnosus by use of API kit and 16S rDNA sequencing, and designated as P. damnosus JNU 534. The bacteriocin produced by P. damnosus JNU 534 markedly inhibited the growth of some of LAB and Listeria monocytogenes, whereas other pathogens including Gram negative bacteria were not susceptible. The production of bacteriocin started at the beginning of exponential phase and reached maximum activity at the early stationary phase. The bacteriocin was stable on the wide pH range of 2-9 and heat treatment up to $100^{\circ}C$ for 15 min. The antimicrobial compound was inactivated by treatments of proteolytic enzymes indicating its proteinaceous in nature. The bacteriocin was purified by 30% ammonium sulfate precipitation followed by hydrophobic interaction column and $C_{18}$ column chromatography. The estimated molecular weight of the bacteriocin using tricine SDS-PAGE was approximately 3.4 kDa and the identified N-terminal amino acid sequence was $NH_2$-ILLEELNV.

Microarray Analysis of Gene Expression in the Uterine Endometrium during the Implantation Period in Pigs

  • Kim, Min-Goo;Seo, Hee-Won;Choi, Yo-Han;Shim, Jang-Soo;Kim, Hee-Bal;Lee, Chang-Kyu;Ka, Hak-Hyun
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.25 no.8
    • /
    • pp.1102-1116
    • /
    • 2012
  • During embryo implantation in pigs, the uterine endometrium undergoes dramatic morphological and functional changes accompanied with dynamic gene expression. Since the greatest amount of embryonic losses occur during this period, it is essential to understand the expression and function of genes in the uterine endometrium. Although many reports have studied gene expression in the uterine endometrium during the estrous cycle and pregnancy, the pattern of global gene expression in the uterine endometrium in response to the presence of a conceptus (embryo/fetus and associated extraembryonic membranes) has not been completely determined. To better understand the expression of pregnancy-specific genes in the endometrium during the implantation period, we analyzed global gene expression in the endometrium on day (D) 12 and D15 of pregnancy and the estrous cycle using a microarray technique in order to identify differentially expressed endometrial genes between D12 of pregnancy and D12 of the estrous cycle and between D15 of pregnancy and D15 of the estrous cycle. Results showed that the global pattern of gene expression varied with pregnancy status. Among 23,937 genes analyzed, 99 and 213 up-regulated genes and 92 and 231 down-regulated genes were identified as differentially expressed genes (DEGs) in the uterine endometrium on D12 and D15 of pregnancy compared to D12 and D15 of the estrous cycle, respectively. Functional annotation clustering analysis showed that those DEGs included genes involved in immunity, steroidogenesis, cell-to-cell interaction, and tissue remodeling. These findings suggest that the implantation process regulates differential endometrial gene expression to support the establishment of pregnancy in pigs. Further analysis of the genes identified in this study will provide insight into the cellular and molecular bases of the implantation process in pigs.

Contribution of the MLH1 -93G>A Promoter Polymorphism in Modulating Susceptibility Risk in Malaysian Colorectal Cancer Patients

  • Nizam, Zahary Mohd;Abdul Aziz, Ahmad Aizat;Kaur, Gurjeet;Abu Hassan, Muhammad Radzi;Mohd Sidek, Ahmad Shanwani;Lee, Yeong Yeh;Mazuwin, Maya;Ankathil, Ravindran
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.14 no.2
    • /
    • pp.619-624
    • /
    • 2013
  • Background: Colorectal cancer (CRC) exists in a more common sporadic form and less common hereditary forms, associated with the Lynch syndrome, familial adenomatous polyposis (FAP) and other rare syndromes. Sporadic CRC is believed to arise as a result of close interaction between environmental factors, including dietary and lifestyle habits, and genetic predisposition factors. In contrast, hereditary forms such as those related to the Lynch syndrome result from inheritance of germline mutations of mismatch repair (MMR) genes. However, in certain cases, the influence of low penetrance alleles in familial colorectal cancer susceptibility is also undeniable. Aim: To investigate the genotype frequencies of MLH1 promoter polymorphism -93G>A and to determine whether it could play any role in modulating familial and sporadic CRC susceptibility risk. Methods: A case-control study comprising of 104 histopathologically confirmed CRC patients as cases (52 sporadic CRC and 52 Lynch syndrome patients) and 104 normal healthy individuals as controls was undertaken. DNA was extracted from peripheral blood and the polymorphism was genotyped employing PCR-RFLP methods. The genotypes were categorized into homozygous wild type, heterozygous and homozygous variants. The risk association between these polymorphisms and CRC susceptibility risk was calculated using binary logistic regression analysis and deriving odds ratios (ORs). Results: When risk association was investigated for all CRC patients as a single group, the heterozygous (G/A) genotype showed a significantly higher risk for CRC susceptibility with an OR of 2.273, (95%CI: 1.133-4.558 and p-value=0.021). When analyzed specifically for the 2 types of CRC, the heterozygous (G/A) genotype showed significantly higher risk for sporadic CRC susceptibility with and OR of 3.714, (95%CI: 1.416-9.740 and p-value=0.008). Despite high OR value was observed for Lynch syndrome (OR: 1.600, 95%CI: 0.715-3.581), the risk was not statistically significant (P=0.253). Conclusion: Our results suggest an influence of MLH1 promoter polymorphism -93G>A in modulating susceptibility risk in Malaysian CRC patients, especially those with sporadic disease.